小红书NLP大模型算法实习生
POI部门介绍: POI智能化致力于智能化的手段,真实还原现实世界兴趣点(Point of Interest),为高德出行和生活服务提供支撑,是高德用户信息获取、交易履约和出行体验的基础; 每个POI背后都有精彩的故事,我们作为链接POI和用户的第一步,每一分努力都是与现实世界的一次互动。欢迎加入我们,从另一个视角来观察世界! 职位描述: 1. 研究、训练、使用预训练模型,解决地图领域POI数据相关业务,包括但不限于文本理解,文本生成以及语义匹配等相关任务。 2. 从事预训练模型研究、训练、应用,包括但不限于多语言、多模态、训练任务优化、下游任务迁移、知识融入更新、模型性能提升等; 3. 负责多模态、跨语言预训练等相关底层技术的研究与实现,并应用于下游的文本/图像的理解与生成; 4. 将预训练模型与搜索/地图领域实际问题相结合,包括但不限于训练任务优化、任务迁移、知识融入更新、模型性能提升等;
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 1、大模型算法研发:构建电商领域的大模型LLM底座,融合电商的知识,快速落地电商业务,例如:沉淀电商大模型预训练链路,研发电商NLP大模型,或者研发电商图文或者视频多模态大模型; 2、基础算法研发:持续建设和深耕NLP/CV/多模态基础预训练算法(BERT类算法),例如:沉淀&优化电商场景的预训练模型,包括超长文本/口语文本预训练,电商图片/视频自监督,适配电商商品的多模态表征学习等; 3、梳理&沉淀算法库,抽象算法接口,最大化提高算法/预训练模型的复用率,同时优化数据采集&模型训练&部署&推理的流程,提升研发效率; 4、技术输出:定期分享SOTA模型,赋能电商甚至公司级别的业务BU,沉淀专利和论文。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 1、大模型算法研发:构建电商领域的大模型LLM底座,融合电商的知识,快速落地电商业务,例如:沉淀电商大模型预训练链路,研发电商NLP大模型,或者研发电商图文或者视频多模态大模型; 2、基础算法研发:持续建设和深耕NLP/CV/多模态基础预训练算法(BERT类算法),例如:沉淀&优化电商场景的预训练模型,包括超长文本/口语文本预训练,电商图片/视频自监督,适配电商商品的多模态表征学习等; 3、梳理&沉淀算法库,抽象算法接口,最大化提高算法/预训练模型的复用率,同时优化数据采集&模型训练&部署&推理的流程,提升研发效率; 4、技术输出:定期分享SOTA模型,赋能电商甚至公司级别的业务BU,沉淀专利和论文。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 1、大模型算法研发:构建电商领域的大模型LLM底座,融合电商的知识,快速落地电商业务,例如:沉淀电商大模型预训练链路,研发电商NLP大模型,或者研发电商图文或者视频多模态大模型; 2、基础算法研发:持续建设和深耕NLP/CV/多模态基础预训练算法(BERT类算法),例如:沉淀&优化电商场景的预训练模型,包括超长文本/口语文本预训练,电商图片/视频自监督,适配电商商品的多模态表征学习等; 3、梳理&沉淀算法库,抽象算法接口,最大化提高算法/预训练模型的复用率,同时优化数据采集&模型训练&部署&推理的流程,提升研发效率; 4、技术输出:定期分享SOTA模型,赋能电商甚至公司级别的业务BU,沉淀专利和论文。