蚂蚁金服蚂蚁集团-AI搜索工程研发-北京/杭州/上海
任职要求
1、计算机相关专业,精通Java/C++,3年以上开发经验,基础功底扎实,拥有主导过大规模搜索引擎系统(网页、图片、视频)等方面经验,具备大规模网页离线系统、向量检索、索引等研发经验者优先 2、 具备大模型应用研发经验,包括生成式搜索、Agent研发等,有大模型推理优化经验者优先,熟悉TensorFlow/PyTorch等业界主流AI框架并了解MLSys相关前沿技术者优先 3、有良好的沟通能力,跨团队协作能力,具备出色的计划和执行力,强烈的责任感; 4、学习能力强,有良好的创新能力和逻辑思维能力,善于主动思考,对技术有强烈激情。
工作职责
1、前瞻性地探索面向AI Native应用的新型AI搜索系统架构设计,构建高可靠性、高性能、高可扩展性的系统,并推动落地 2、负责AI搜索架构研发,包括生成式搜索、多模态搜索等,基于百亿级大规模数据和大模型技术推进搜索关键技术攻关 3、负责网页、图片、视频、文档等全网索引数据收录、理解、建库及索引架构设计,构建高时效、高质量、高可用的索引数据架构体系 4、面向多场景应用,推进搜索平台化建设,提升迭代效率
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度; 4、构建高性能、低资源消耗的大规模批流一体检索和计算系统,提升资源利用率。 职位描述: 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。
团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。