快手推荐算法工程师 - 【内容推荐】
社招全职D4121地点:北京状态:招聘
任职要求
1、优秀的编码与代码控制能力, 有扎实的数据结构和算法功底; 2、熟悉Linux开发环境,熟悉C++和Python语言; 3、熟悉tensorflow或pytorch; 4、熟悉业界机器学习算法、数据挖掘思想、大规模分布式计算中一项或多项; 5、具备推荐实际工作经验者优先; 6、具备知识图谱经验优先; 7、学习能力优秀,具有创造性思维和执行力,对于技术落地有浓厚兴趣,善于思考和运用新知识。
工作职责
1、参与亿级用户规模的视频和直播的推荐优化,改善快手主APP推荐体验; 2、通过知识图谱和推荐的结合,做更精准高效的内容分发; 3、分析海量用户行为数据和视频数据,挖掘用户兴趣,优化内容分发机制;
包括英文材料
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
相关职位
社招1年以上D12112
1、设计和迭代大规模机器学习模型和推荐系统,优化快手直播用户体验; 2、分析海量用户行为数据,提高用户与主播的匹配效率,助力直播营收持续增长; 3、参与前沿问题的探索与研究,结合实际应用场景,提供全面的技术解决方案。
更新于 2025-03-26
社招内容理解
1. 参与亿级用户规模的推荐系统优化,提升笔记发布量和发布作者规模,繁荣作者生态; 2. 基于因果推断、大语言模型等技术优化流量分配机制,提升新笔记冷启效率,促进社区长期健康发展; 3. 负责小红书全站关注关系构建和关系内容分发,通过内容推荐和用户推荐,提升私域规模和用户社交体验; 4. 跟踪业界深度学习/强化学习/跨域学习/图网络等领域前沿进展,灵活应用于业务中取得实际收益。
更新于 2025-09-18
社招5年以上技术类
推荐算法工程师服务于哔哩哔哩主站的内容推荐,包括feed流推荐和相关推荐等场景。我们期望使用机器学习,数据挖掘等手段,提升这些场景的推荐效果。 1.负责推荐核心算法研发,提升用户体验,提高业务转化效率; 2.与产品/运营/数据等相关团队密切合作,驱动推荐业务快速迭代; 3.解决具体场景问题,包括新用户的推荐效果,生态机制,多样性策略等。
更新于 2025-03-31