logo of iqiyi

爱奇艺制作⼈ (影视动画⽅向)

社招全职8年以上游戏制作人地点:北京状态:招聘

任职要求


- 本科及以上学历 ,8年以上3D动画项⽬制作经验 ,动画或互动媒体艺术等专业背景;
- 主导过⾄少⼀款3D动画从⽴项、制作、发布的完整项⽬周期;
- 丰富的项⽬管理经验 ,能够有效把控项⽬节点及资源协调整合;
- 热爱影视动画 ,有激情 ,结果导向 ,善于思考和解决问题。

工作职责


- 结合公司规划及资源 ,确定线下娱乐项⽬定位 ,把握发展⽅向;
- 主导核⼼玩法、体验、系统等设计 ,输出需求⽂档 ,协同美术团队确定美术风格;
- 统筹项⽬开发 ,促进各团队协作以及内外部资源的合理优化配置。
包括英文材料
学历+
相关职位

logo of yoka
校招

1、游戏广告素材制作:负责游戏推广视频的设计与剪辑,包括创意策划、后期合成、特效音效添加,需结合游戏卖点及市场热点进行差异化设计; 2、游戏剧情素材剪辑:与制作人、文案策划和美术沟通需求,根据需求剪辑制作游戏剧情视频素材; 3、动态物料与直播内容处理:制作游戏动态广告、直播切片剪辑,协助优化投放效果,提升用户转化率; 4、跨部门协作:与广告优化师、策划团队沟通需求,根据数据反馈调整素材方向,提升投放效率。

更新于 2025-07-25
logo of netease
社招5年以上网易游戏(互娱)

1、跟进游戏研发特性小组,主导和团队的⽇常对接,对管线全流程负责; 2、需求开启前主导流程搭建以及规范的梳理; 3、协调跨部门合作,紧跟制作进度,推动解决制作过程中的各种问题,合理分配人力; 4、对可能存在的质量风险、周期风险进行及时预判,适时提出有效预警,并提供多种应对⽅案; 5、对⾼出预算或可能对项⽬预算造成影响的制作需求做出预判和预警,对接包括策划、主美、导演、环节负责人在内的团队成员以及供应商进⾏成本控制; 6、里程碑完成后的资源整合、归档、问题复盘等⼀系列资源管理⼯作。

更新于 2025-06-11
logo of bytedance
社招A11449

团队介绍:V-AI团队当前支持抖音直播、开放平台、V项目(AI分身/小火人等)业务方向,涵盖了自然语言处理、计算机视觉、图形学等技术领域,通过大模型技术来创造新的互动玩法、制作美术资产、提升研发运营效率等,当前已上线和开展中的项目包括直播大模型(助播/伴播/独播)、角色多模态对话大模型、研发智能助手、3D模型生成大模型、动作生成大模型等。 课题介绍: 背景:随着虚拟现实、增强现实、数字孪生等技术的快速应用,3D数字资产已成为构建沉浸式数字空间的核心要素。在影视动画、游戏开发、直播、社交等领域,3D模型与3D动作的需求呈现爆发式增长。然而,传统3D内容生产高度依赖人工建模与动作捕捉技术,存在效率低、成本高、创作门槛高等瓶颈,难以满足直播等场景中大规模、高保真、多样化、高频迭代的3D内容需求。近年来,以生成式人工智能(AIGC)为代表的大模型技术在2D图像与视频生成领域取得突破性进展,但在3D内容生成领域仍面临表征复杂、多模态数据稀缺、物理规律约束严格等难题。如何将大模型技术与3D生成任务深度融合,实现“文本/图像到3D模型”、“文本/语音到动作”的高质量生成,形成建模+驱动的一站式美术资产生成管线以适配直播场景下资产迭代速度快,品质要求高的需求是当前的重要研究内容。 课题挑战: 传统方法依赖人工建模工具或程序化生成算法,存在生成效率与创作自由度之间的固有矛盾。AI技术虽然能很好地弥补人工生成效率不足的问题,但仍然存在如下挑战 1. 表征困难:与一维文本和二维图像可以自然地实现结构化表征不同,3D模型由于其多模态(如几何、纹理、材质等)、结构复杂和高维度等特性,使得其表征更为复杂。而3D动作又与物理世界紧密相关,且动态复杂度高。因此,如何高效地表征3D几何形状和3D动作,同时确保高品质的生成,仍然是亟需突破的课题。 2. 生成困难:模型生成需同时保障结构完整性、拓扑合理性和细节丰富性;动作生成需兼顾运动多样性、物理约束与时空连续性。现有方法易出现模型畸变、贴图瑕疵、动作力度不足和多样性差等问题。 3. 数据不足:3D数据标注成本高、多模态对齐难度大,且现有公开数据集规模有限,导致大模型训练面临数据不足的问题;如何把相关模态数据(图像、视频)利用起来,提升3D模型和3D动作的生成品质也是当前的重大挑战。 4. 评估体系不完善:缺乏统一的3D生成质量量化指标,现有评价多依赖人工主观判断,难以客观衡量生成的几何精度、动作自然度与多模态语义一致性,因此建立完善、客观、可量化的评价体系是保障技术迭代的关键基石。 1、负责抖音、抖音直播及相关产品的大语言模型/多模态大模型/AIGC算法研发,如数字人、3D生成、动作生成、智能对话等相关工作; 2、负责关键场景的算法优化,构建高质量的模型和Agent系统,提升业务效果; 3、跟踪AI前沿技术进展,推动前沿技术的产品化落地。

更新于 2025-05-27
logo of bytedance
社招A128065A

团队介绍:V-AI团队当前支持抖音直播、开放平台、V项目(AI分身/小火人等)业务方向,涵盖了自然语言处理、计算机视觉、图形学等技术领域,通过大模型技术来创造新的互动玩法、制作美术资产、提升研发运营效率等,当前已上线和开展中的项目包括直播大模型(助播/伴播/独播)、角色多模态对话大模型、研发智能助手、3D模型生成大模型、动作生成大模型等。 课题介绍: 背景:随着虚拟现实、增强现实、数字孪生等技术的快速应用,3D数字资产已成为构建沉浸式数字空间的核心要素。在影视动画、游戏开发、直播、社交等领域,3D模型与3D动作的需求呈现爆发式增长。然而,传统3D内容生产高度依赖人工建模与动作捕捉技术,存在效率低、成本高、创作门槛高等瓶颈,难以满足直播等场景中大规模、高保真、多样化、高频迭代的3D内容需求。近年来,以生成式人工智能(AIGC)为代表的大模型技术在2D图像与视频生成领域取得突破性进展,但在3D内容生成领域仍面临表征复杂、多模态数据稀缺、物理规律约束严格等难题。如何将大模型技术与3D生成任务深度融合,实现“文本/图像到3D模型”、“文本/语音到动作”的高质量生成,形成建模+驱动的一站式美术资产生成管线以适配直播场景下资产迭代速度快,品质要求高的需求是当前的重要研究内容。 课题挑战: 传统方法依赖人工建模工具或程序化生成算法,存在生成效率与创作自由度之间的固有矛盾。AI技术虽然能很好地弥补人工生成效率不足的问题,但仍然存在如下挑战 1. 表征困难:与一维文本和二维图像可以自然地实现结构化表征不同,3D模型由于其多模态(如几何、纹理、材质等)、结构复杂和高维度等特性,使得其表征更为复杂。而3D动作又与物理世界紧密相关,且动态复杂度高。因此,如何高效地表征3D几何形状和3D动作,同时确保高品质的生成,仍然是亟需突破的课题。 2. 生成困难:模型生成需同时保障结构完整性、拓扑合理性和细节丰富性;动作生成需兼顾运动多样性、物理约束与时空连续性。现有方法易出现模型畸变、贴图瑕疵、动作力度不足和多样性差等问题。 3. 数据不足:3D数据标注成本高、多模态对齐难度大,且现有公开数据集规模有限,导致大模型训练面临数据不足的问题;如何把相关模态数据(图像、视频)利用起来,提升3D模型和3D动作的生成品质也是当前的重大挑战。 4. 评估体系不完善:缺乏统一的3D生成质量量化指标,现有评价多依赖人工主观判断,难以客观衡量生成的几何精度、动作自然度与多模态语义一致性,因此建立完善、客观、可量化的评价体系是保障技术迭代的关键基石。 1、负责抖音、抖音直播及相关产品的大语言模型/多模态大模型/AIGC算法研发,如数字人、3D生成、动作生成、智能对话等相关工作; 2、负责关键场景的算法优化,构建高质量的模型和Agent系统,提升业务效果; 3、跟踪AI前沿技术进展,推动前沿技术的产品化落地。

更新于 2025-05-27