腾讯腾讯广告-平台与内容广告算法工程师
任职要求
1.熟练掌握C/C++、Python编程语言,具备良好的coding和调试能力; 2.有扎实的数据结构和算法功底,深入掌握机器学习、深度学习算法原理,熟悉tensorflow/pytorc…
工作职责
1.负责腾讯视频、新闻、浏览器、QQ、TME等媒体的广告收入分析和效果优化。包括广告和内容混排算法迭代,广告推荐模型(点击率、转化率、双塔模型)的特征和模型结构优化,以及千人千面的样式优选算法; 2.参与机器学习前沿方向的算法研究并在广告推荐领域进行落地,包括强化学习算法在广告推荐的应用、大模型相关技术的落地、以及多场景统一建模和跨场景的迁移学习等,驱动前沿研究与业务结合落地。
团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着全球化业务的快速增长,广告场景面临千亿级数据训练、毫秒级实时响应、多模态内容理解与生成的综合挑战。传统广告模型(如CTR/CVR预估)在分布式训练效率、长序列用户行为建模、长尾泛化能力等方面逐渐面临瓶颈。与此同时,LLM技术为广告系统带来了革新机遇——从基于AIGC的广告素材生成、大规模超长序列建模、多模态视频内容理解,到隐私安全增强的联邦学习框架,以及通过大语言模型重构用户意图挖掘与定向策略等,均成为行业前沿探索方向。 课题挑战: 在广告业务场景中,探索LLM技术突破传统模型能力边界:一方面需重构广告召回与排序机制,通过长周期用户兴趣建模解决短行为序列的局限性,同时满足广告系统高实时响应要求,实现LLM增强的全域流量效率提升;另一方面需实现AIGC广告素材的规模化生产与精准控制,平衡品牌规范约束与创意多样性,适配全球化场景下的多语言与文化合规需求。此外,如何从非结构化行为数据中挖掘用户隐式意图,突破冷启动、泛化性等业务瓶颈,成为提升广告效果的关键技术创新方向。 另外广告生态特有的复杂约束对LLM技术提出更高要求:在海量站内站外信号的背景下,解决超大规模稀疏数据下的模型迭代效率问题;同时需构建隐私安全的LLM协同计算框架,在保障数据合规的前提下实现广告主专属数据与平台模型的深度协同。这些挑战要求技术方案兼具算法创新与系统工程能力,以应对广告场景中特有的实时性、规模化和合规性等多重挑战。
团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着全球化业务的快速增长,广告场景面临千亿级数据训练、毫秒级实时响应、多模态内容理解与生成的综合挑战。传统广告模型(如CTR/CVR预估)在分布式训练效率、长序列用户行为建模、长尾泛化能力等方面逐渐面临瓶颈。与此同时,LLM技术为广告系统带来了革新机遇——从基于AIGC的广告素材生成、大规模超长序列建模、多模态视频内容理解,到隐私安全增强的联邦学习框架,以及通过大语言模型重构用户意图挖掘与定向策略等,均成为行业前沿探索方向。 课题挑战: 在广告业务场景中,探索LLM技术突破传统模型能力边界:一方面需重构广告召回与排序机制,通过长周期用户兴趣建模解决短行为序列的局限性,同时满足广告系统高实时响应要求,实现LLM增强的全域流量效率提升;另一方面需实现AIGC广告素材的规模化生产与精准控制,平衡品牌规范约束与创意多样性,适配全球化场景下的多语言与文化合规需求。此外,如何从非结构化行为数据中挖掘用户隐式意图,突破冷启动、泛化性等业务瓶颈,成为提升广告效果的关键技术创新方向。 另外广告生态特有的复杂约束对LLM技术提出更高要求:在海量站内站外信号的背景下,解决超大规模稀疏数据下的模型迭代效率问题;同时需构建隐私安全的LLM协同计算框架,在保障数据合规的前提下实现广告主专属数据与平台模型的深度协同。这些挑战要求技术方案兼具算法创新与系统工程能力,以应对广告场景中特有的实时性、规模化和合规性等多重挑战。
团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着全球化业务的快速增长,广告场景面临千亿级数据训练、毫秒级实时响应、多模态内容理解与生成的综合挑战。传统广告模型(如CTR/CVR预估)在分布式训练效率、长序列用户行为建模、长尾泛化能力等方面逐渐面临瓶颈。与此同时,LLM技术为广告系统带来了革新机遇——从基于AIGC的广告素材生成、大规模超长序列建模、多模态视频内容理解,到隐私安全增强的联邦学习框架,以及通过大语言模型重构用户意图挖掘与定向策略等,均成为行业前沿探索方向。 课题挑战: 在广告业务场景中,探索LLM技术突破传统模型能力边界:一方面需重构广告召回与排序机制,通过长周期用户兴趣建模解决短行为序列的局限性,同时满足广告系统高实时响应要求,实现LLM增强的全域流量效率提升;另一方面需实现AIGC广告素材的规模化生产与精准控制,平衡品牌规范约束与创意多样性,适配全球化场景下的多语言与文化合规需求。此外,如何从非结构化行为数据中挖掘用户隐式意图,突破冷启动、泛化性等业务瓶颈,成为提升广告效果的关键技术创新方向。 另外广告生态特有的复杂约束对LLM技术提出更高要求:在海量站内站外信号的背景下,解决超大规模稀疏数据下的模型迭代效率问题;同时需构建隐私安全的LLM协同计算框架,在保障数据合规的前提下实现广告主专属数据与平台模型的深度协同。这些挑战要求技术方案兼具算法创新与系统工程能力,以应对广告场景中特有的实时性、规模化和合规性等多重挑战。
1.负责知乎短篇故事的推荐系统,包括但不限于信息流、个性化推送等场景的算法策略设计与研发。 2.深入理解业务与内容:对知乎短篇故事内容形态有深刻理解,能够定义和挖掘识别内容侧的特征和剧情张力、爽点设计。 3.用户兴趣建模:构建并持续优化用户的短期及长期兴趣模型,精准捕捉用户对特定题材、作者、写作风格的偏好,利用深度学习模型来解决推荐系统中的召回、排序、重排等关键问题,为用户精准匹配最感兴趣的故事世界。 4.数据驱动闭环:基于A/B测试、用户行为数据分析,科学评估算法效果,持续迭代和优化推荐策略,提升关键业务指标(如点击率、阅读时长、留存率、付费转化率等)。 5.探索与创新:探索大语言模型(LLM)在内容理解、摘要生成、个性化推荐等领域的应用,将新技术与业务场景深度结合。