百度工业数据算法工程师(J81472)
任职要求
-拥有计算机科学、能源动力科学、工程物理相关学科的硕士或博士学位 -扎实的工业仿真、自动控制实践经验,精通常见的PID、MPC、自适应控制等算法开发,并有丰富的工程调试经验 -扎实的机器学习、科学计算理论基础,精通机器侠学习、深度学习、强化学习、微分方程、数值计算等基础算法 -熟练使用Python,较强的编码能力,熟悉深度学习开发框架,如TensorFlow、PyTorch等,并能够根据具体工程问题选择合适的模型和算法 -有较强的代码能力优先,有各类竞赛获奖经历(如kaggle,天池、DF、DC等比赛平台)、有过ACM等编程竞赛经历,或代码开源在github上并有较大影响;能源系统、火力发电领域的运维、控制、优化的算法开发经验以及项目经历者优先;商业/开源工业仿真软件的使用经历:如MATLAB/Simulink、Dymola、Modelica、ASPEN、ANSYS等
工作职责
-参与机器学习/深度学习方法在科学计算方向的计算引擎及平台开发 -参与能源系统/火力发电控制优化以及运行维护领域的算法应用开发 -支持完成数据算法在火电能碳具体应用场景的交付落地 -探索数据机理知识融合的方法在工业仿真、控制、优化领域的其他前沿应用场景储备
-参与机器学习/深度学习方法在科学计算方向的计算引擎及平台开发 -参与能源系统/火力发电控制优化以及运行维护领域的算法应用开发 -支持完成数据算法在火电能碳具体应用场景的交付落地 -探索数据机理知识融合的方法在工业仿真、控制、优化领域的其他前沿应用场景储备
数据算法团队在特斯拉工业智能研发方面扮演关键角色。我们通过自主搭建数据算法平台,赋能生产制造、供应链、销售、服务和充电网络等领域,将信息转化为高价值的数据资产,从而创造更优质的产品并提供完美的用户体验。 作为特斯拉应用软件团队的数据算法工程师,您将参与自研数据算法产品和项目的全生命周期,从孵化到落地,从雏形到成熟。您将领导数据的收集、清理、预处理、模型训练以及生产部署的全流程。理想候选人应对人工智能和3D视觉技术充满热情,并紧跟该领域的最新进展。 本职位主要聚焦于工厂相关的3D机器视觉应用,包括自动视觉质检、机器人引导、视觉尺寸测量(如精确尺寸验证、公差检查和3D形状分析)、物体姿态估计以及工业自动化场景中的点云处理和实时感知。 岗位职责 机器协同控制相关:负责相机标定、手眼标定、点云数据处理(如滤波、分割、检测、配准和6D位姿估计),配合机器人/PLC等技术,驱动3D视觉应用与生产协同。主动开展机器人控制和引导,促进生产制造效率。 3D数据处理相关:负责机器视觉项目中大批量3D数据(如点云、深度图像)的收集、整理、过滤和清洗。需熟练处理视觉尺寸测量任务,包括使用激光三角测量或立体视觉方法进行物体尺寸提取、形状建模和精度校准。需熟练使用Python、C++、OpenCV、PCL、Numpy、Blender等工具处理3D数据。 模型开发相关:负责3D视觉项目的物体检测、分割、姿态估计模型的数据预处理、训练、迭代、重训练,以及模型准确率提升和搜索任务。在视觉尺寸测量领域,需开发和优化相关模型(如基于PointNet的尺寸估计网络),确保测量精度达到工业标准(如微米级)。需具备Python、C++、TensorFlow/PyTorch等框架经验,并理解常用神经网络(如CNN、PointNet、Transformer变体)在3D视觉中的应用。熟悉Pandas、MongoDB(Aggregation)、Redis、Kafka等工具用于模型部署。 创新相关:对最新的3D视觉技术和趋势(如实时SLAM、神经辐射场NeRF、多模态融合)保持敏感,能够提出创新解决方案应对工业生产挑战,例如机器人路径规划中的点云配准优化或视觉尺寸测量中的实时公差检测优化,以提升质量控制效率。
特斯拉数据算法团队在工业智能研发中扮演关键角色。我们通过自主构建数据算法平台,赋能生产制造、供应链、销售、服务和充电网络等业务领域,将海量信息转化为高价值数据资产,从而打造更卓越的产品并提升用户体验。 作为特斯拉数据算法工程师,您将全程参与自研数据算法产品和项目的孵化、落地与迭代过程。从数据收集、清洗和预处理,到模型训练与生产部署,您将主导整个流程。理想候选人应热爱人工智能,并紧跟领域前沿动态。 本职位聚焦工业领域的计算机视觉应用,包括缺陷检测、视觉引导、尺寸测量以及视觉大模型等。 职责描述 负责对接公司内部计算机视觉项目,独立设计视觉方案、部署落地,并管理项目全生命周期。 处理计算机视觉项目的图像收集、整理、过滤和清洗;执行数据预处理、模型训练、迭代、重训练,以及准确率优化和模型搜索等任务,涵盖分类、识别和图像分割等领域。 探索多模态大模型在工业场景的应用,研究少样本检测、视频理解等方向的创新解决方案。 追踪计算机视觉技术前沿趋势,提出创新方案应对工业生产挑战。 必备条件 计算机科学、数学、统计学或相关学科的本科及以上学历。 扎实的Python和C++开发经验。 精通OpenCV等图像处理算法。 具备TensorFlow或PyTorch模型开发经验。 掌握数据科学工具,如Pandas、NumPy、Matplotlib,以及MongoDB Aggregation等。 有多模态大模型相关项目经验,并在至少一个领域(如多模态大模型、多模态表征或少样本学习)有深入研究。 优先条件 有将计算机视觉技术应用于工业制造或相关领域的实际项目经验。 熟悉机器人/PLC控制、工业相机/激光传感器/光源解决方案。 有在敏捷开发环境中的工作经验。 具备优秀的书面和口头沟通能力。 有项目管理经验,能按时节点完成开发任务。 拥有算法开发背景,例如参与过ACM竞赛。 在相关领域的学术期刊或会议上发表过论文。 加入我们 加入特斯拉,您将在充满活力和创新的环境中,与全球顶尖工程师和科学家合作,通过机器视觉技术推动工业自动化和智能制造的进步。如果您对机器学习、人工智能和计算机视觉充满热情,并渴望在这一前沿领域实现自我价值,欢迎成为我们的一员! The Role Tesla's Data Algorithms Team plays a pivotal role in industrial intelligence research and development. We empower various business areas—including manufacturing, supply chain, sales, service, and charging networks—by building our own data algorithms platform. This transforms vast amounts of information into high-value data assets, enabling us to create superior products and deliver an enhanced user experience. As a Tesla Data Algorithms Engineer, you will be fully involved in the incubation, implementation, and iteration of our in-house data algorithms products and projects. From data collection, cleaning, and preprocessing to model training and production deployment, you will lead the entire process. The ideal candidate is passionate about artificial intelligence and stays abreast of the latest developments in the field. This position focuses on computer vision applications in the industrial sector, including defect detection, visual guidance, dimension measurement, and large vision models. Responsibilities Handle internal computer vision projects, independently design visual solutions, deploy them, and manage the full project lifecycle. Manage image collection, organization, filtering, and cleaning for computer vision projects; perform data preprocessing, model training, iteration, retraining, accuracy optimization, and model search tasks, covering areas such as classification, recognition, and image segmentation. Explore the application of multimodal large models in industrial scenarios, researching innovative solutions in directions like few-shot detection and video understanding. Track cutting-edge trends in computer vision technology and propose innovative solutions to address challenges in industrial production. Required
特斯拉数据算法团队在工业智能研发中扮演关键角色。我们通过自主构建数据算法平台,赋能生产制造、供应链、销售、服务和充电网络等业务领域,将海量信息转化为高价值数据资产,从而打造更卓越的产品并提升用户体验。 作为特斯拉数据算法工程师,您将全程参与自研数据算法产品和项目的孵化、落地与迭代过程。从数据收集、清洗和预处理,到模型训练与生产部署,您将主导整个流程。理想候选人应热爱人工智能,并紧跟领域前沿动态。 本职位聚焦工业领域的计算机视觉应用,包括缺陷检测、视觉引导、尺寸测量以及视觉大模型等。 职责描述 负责对接公司内部计算机视觉项目,独立设计视觉方案、部署落地,并管理项目全生命周期。 处理计算机视觉项目的图像收集、整理、过滤和清洗;执行数据预处理、模型训练、迭代、重训练,以及准确率优化和模型搜索等任务,涵盖分类、识别和图像分割等领域。 探索多模态大模型在工业场景的应用,研究少样本检测、视频理解等方向的创新解决方案。 追踪计算机视觉技术前沿趋势,提出创新方案应对工业生产挑战。 必备条件 计算机科学、数学、统计学或相关学科的本科及以上学历。 扎实的Python和C++开发经验。 精通OpenCV等图像处理算法。 具备TensorFlow或PyTorch模型开发经验。 掌握数据科学工具,如Pandas、NumPy、Matplotlib,以及MongoDB Aggregation等。 有多模态大模型相关项目经验,并在至少一个领域(如多模态大模型、多模态表征或少样本学习)有深入研究。 优先条件 有将计算机视觉技术应用于工业制造或相关领域的实际项目经验。 熟悉机器人/PLC控制、工业相机/激光传感器/光源解决方案。 有在敏捷开发环境中的工作经验。 具备优秀的书面和口头沟通能力。 有项目管理经验,能按时节点完成开发任务。 拥有算法开发背景,例如参与过ACM竞赛。 在相关领域的学术期刊或会议上发表过论文。 加入我们 加入特斯拉,您将在充满活力和创新的环境中,与全球顶尖工程师和科学家合作,通过机器视觉技术推动工业自动化和智能制造的进步。如果您对机器学习、人工智能和计算机视觉充满热情,并渴望在这一前沿领域实现自我价值,欢迎成为我们的一员! The Role Tesla's Data Algorithms Team plays a pivotal role in industrial intelligence research and development. We empower various business areas—including manufacturing, supply chain, sales, service, and charging networks—by building our own data algorithms platform. This transforms vast amounts of information into high-value data assets, enabling us to create superior products and deliver an enhanced user experience. As a Tesla Data Algorithms Engineer, you will be fully involved in the incubation, implementation, and iteration of our in-house data algorithms products and projects. From data collection, cleaning, and preprocessing to model training and production deployment, you will lead the entire process. The ideal candidate is passionate about artificial intelligence and stays abreast of the latest developments in the field. This position focuses on computer vision applications in the industrial sector, including defect detection, visual guidance, dimension measurement, and large vision models. Responsibilities Handle internal computer vision projects, independently design visual solutions, deploy them, and manage the full project lifecycle. Manage image collection, organization, filtering, and cleaning for computer vision projects; perform data preprocessing, model training, iteration, retraining, accuracy optimization, and model search tasks, covering areas such as classification, recognition, and image segmentation. Explore the application of multimodal large models in industrial scenarios, researching innovative solutions in directions like few-shot detection and video understanding. Track cutting-edge trends in computer vision technology and propose innovative solutions to address challenges in industrial production. Required