logo of kuaishou

快手搜索产品实习生-【电商】(杭州)

实习兼职D11445地点:杭州状态:招聘

任职要求


1、本科及以上学历,有策略产品经验优先;
2、短视频产品深度用户,热爱短视频行业;
3、具备较强的逻辑分析能力,善于数据驱动产品迭代。

你可以学习到:
1、学习到搜索这个复杂产品体系的核心打法,积累多方面的产品经验,包括但不限于端/数据策略/后台/增长;
2、拥有丰富经验&来自领域顶级公司的技术产品团队,带领快速学习成长;
3、优化快手核心流量分发策略的机会。

工作职责


1、参与快手搜索结果的主观评价体系迭代优化;
2、参与搜索召回排序策略的数据分析;
3、关注行业发展趋势、调研竞品动态。
包括英文材料
学历+
相关职位

logo of bytedance
实习A131967

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 1、参与千万~亿级规模的电商个性化推荐算法的优化:包括抖音/今日头条/番茄小说等产品线的商品推荐、直播推荐、短视频推荐等; 2、通过表征学习、图模型、深度学习、迁移学习、多任务学习等技术提升信息匹配的效率,让每个用户可以便捷的找到优质好货; 3、挖掘和分析海量用户行为数据,进行用户长短期兴趣建模,以及潜在兴趣预测,提升推荐的精准性; 4、通过算法自动挖掘优质、专业、高口碑的商品和主播,构建良性的循环机制,优化内容电商生态; 5、结合内容电商的业务特性,进行模型和算法创新,打造业界领先的推荐算法和系统。

更新于 2025-02-11
logo of bytedance
实习A16255

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题背景:抖音为用户提供了从娱乐、教育到生活方式的众多内容,形成了广泛的兴趣图谱。多样化的内容消费,不仅反映了用户的即时偏好,还蕴含了深层的消费喜好和潜在购物需求。如何有效建模用户对娱乐内容的兴趣并迁移至电商场景,成为了一个亟待解决的课题。不仅涉及到理解对视频内容的理解,还需构建跨域的兴趣映射机制,实现从内容兴趣到电商兴趣的高效建模。与此同时,随着大模型多模态技术的兴起,我们希望在语言、视频、推荐多个模态下,构建更加强大的推荐系统。 课题挑战: 1)多模态复杂性:用户行为涉及多模态交互(如视频+直播+文字+行为),需统一框架实现内容理解与用户意图推理; 2)识别非电商内容对应的潜在购物信号,研究从内容消费到电商兴趣的高效映射; 3)利用海量数据和世界知识搭建领先的机器学习和推荐服务,实现用户和商品的高效匹配; 研究方向:大语言模型、多模态大模型、内容理解、推荐系统。

更新于 2025-06-09
logo of bytedance
实习A207965

日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:人力与管理部作为公司重要的职能部门之一,助力字节跳动从一家创业公司发展成为拥有超过十万名员工的全球化公司。人力与管理部以“释放人才成长力,激发组织生命力”为使命,在组织、人才、文化等方面持续像打造产品一样打造公司,推动业务成长。 1、根据岗位描述进行简历的筛选、搜索并进行简历的推荐以及候选人意向沟通; 2、负责跟进面试安排、面试反馈等招聘流程; 3、负责招聘渠道开拓及维护,更新招聘信息,负责人才市场的盘点和研究; 4、协助进行人力资源相关的数据统计工作,协助探索招聘的最佳实践。

更新于 2024-12-17
logo of bytedance
实习A135123A

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。

更新于 2025-03-06