logo of kuaishou

快手音视频策略算法实习生

实习兼职D7375地点:北京状态:招聘

任职要求


1、本科及以上学历, 数学、计算机、统计学相关背景;
2、对统计学、机器学习深度学习有较深理解,有较强的模型设计与优化能力;
3、对大模型应用(包括fine tune)有一定了解优先;
4、熟练使用SQL,有R…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1、负责挖掘海量用户数据,基于因果模型、机器学习模型等框架进行基础体验画像建设,包括但不限于 用户 x 内容 x 场景 的清晰度/流畅度/低延迟 偏好画像等;通过精准刻画用户基础体验属性,驱动音视频个性化策略下发;
2、负责构建带宽曲线预测、视频热度预测等时序模型,驱动音视频资源调度优化(e.g.,视频热度时序建模);
3、负责探索大模型在时序预测、资源分配、人群画像偏好等场景的应用和落地;
4、负责与内外部团队合作,包括商业化、电商等,制定基于用户价值的体验和成本优化策略,并推动优化上线。
包括英文材料
学历+
机器学习+
深度学习+
大模型+
还有更多 •••
相关职位

logo of xiaohongshu
实习策略算法

1、参与核心策略设计与实现:深入小红书音视频、直播、图片等内容的分发与体验优化全链路,参与转码、下发、消费等核心策略的设计、编码与迭代,并且可以设计清晰、可扩展的技术方案,并通过高质量的代码实现它; 2、有数据挖掘和数据分析能力,并且可以在真实的业务场景中,学习并运用AB实验、因果推断等科学方法评估策略效果。同时探索强化学习、大模型等前沿技术在用户体验优化领域的应用可能。

更新于 2025-11-26北京|上海
logo of xiaohongshu
实习测试开发

1、负责视频 & 图片画质评测,输出主客观画质评测报告 2、负责竞品调研分析,指导音视频策略优化改进 3、参与图像算法的开发与优化,建立画质评测规范以及验收标准

更新于 2025-07-18北京
logo of bytedance
实习A147566A

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 1、参与ByteDance搜索引擎研发工作,用前沿的机器学习深度学习算法、海量的数据,做激动人心的技术、给用户更好的搜索体验; 2、参与抖音/电商/生活服务等核心产品的搜索研发工作,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 3、参与搜索核心算法改进,可选的方向包括: (1)NLP:利用LLM等技术,研发新的自然语言处理算法和信息检索技术,提高搜索引擎的准确性和智能化程度。 (2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; (3)多模态:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验; (4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; (5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度; 4、构建高性能、低资源消耗的大规模批流一体检索和计算系统,提升资源利用率。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。

更新于 2025-04-21珠海
logo of bytedance
实习A227555

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索工程、算法创新和架构研发工作。我们的职责是用前沿的技术去打造一个用户体验佳、信息效率高的搜索引擎产品。我们的愿景是做一款用户首选的搜索引擎,我们的使命是可以充分整合内容,高效连接人与信息。 团队主要负责抖音、今日头条、西瓜视频、问答和百科等产品的业务研发和架构研发工作。 我们使用前沿的前端、客户端和服务端技术赋能于搜索业务的快速迭代,并在技术上不断创新和突破。同时专注于大流量、高并发、低延时的搜索系统的构建,在性能优化上,追求从内存、Disk等优化到业务架构和网络协议的创新探索,在迭代效能上不断探索容器化、动态化、搭建化等方案的创新,技术氛围强,充分给同学们提供自我成长的机会。 1、参与ByteDance搜索引擎研发工作,用前沿的机器学习深度学习算法、海量的数据,做激动人心的技术、给用户更好的搜索体验; 2、参与抖音/电商/生活服务等核心产品的搜索研发工作,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 3、参与搜索核心算法改进,可选的方向包括: (1)NLP:利用LLM等技术,研发新的自然语言处理算法和信息检索技术,提高搜索引擎的准确性和智能化程度。 (2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; (3)多模态:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验; (4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; (5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度; 4、构建高性能、低资源消耗的大规模批流一体检索和计算系统,提升资源利用率。 1、个性化排序:传统排序算法难以充分利用多模态信息(如文本、图像、视频等),且模型复杂度有限,无法满足用户对精准化和个性化搜索的需求; 2、超大规模检索:传统判别式模型在千亿级别候选库的检索中,面临模型容量不足、索引效率低下等问题,亟需新一代检索算法; 3、复杂Query理解:用户搜索需求日益复杂,传统搜索引擎难以准确理解长难句、多义Query的语义,导致搜索结果满意度低; 4、资源利用率:搜索系统存储和计算分离的架构导致资源利用率低,如何在保证性能的同时优化资源使用成为关键问题。

更新于 2025-04-21杭州