logo of kuaishou

快手多元算力AI计算引擎工程师/专家

社招全职D13084地点:北京状态:招聘

任职要求


1、深入理解深度学习框架底层实现(如TensorFlow/PyTorch的计算图优化、运行时调度等)。熟悉至少一种主流异构计算架构(如NVIDIA CUDA、AMD ROCm、Google TPU等)及其编程模型;
2、具备大集群环境下进…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1、跟踪业界最新强化学习领域算法/训练范式进展,完成大模型强化学习训练框架的设计与实现,提升大集群分布式训练性能,缩短模型迭代周期;
2、负责大模型SFT/蒸馏训练框架的设计与实现,提升分布式训练性能;
3、负责分布式大模型推理引擎的方案设计与实现,快速完成业界Sota模型的规模化上线服务;
4、负责异构计算芯片(GPU/NPU/ASIC等)的评估、选型以及计算加速引擎设计实现。
包括英文材料
深度学习+
TensorFlow+
PyTorch+
CUDA+
还有更多 •••
相关职位

logo of xiaohongshu
社招3-5年引擎

【业务介绍】 作为公司统一的模型训练引擎团队,支撑公司内所有搜推广类业务的训练工程侧工作,包括模型训练、参数服务器、特征样本流水线等,通过引擎能力的持续建设结合多元异构算力为业务提供高效、灵活、稳定的搜广推模型服务。 为公司核心的搜广推业务提供关键的模型训练引擎支撑,解决超大规模稀疏特征训练的核心问题,不断挖掘异构硬件算力,为公司搜广推业务增长提供保障,并获得快速的成长与提升。 【岗位职责】 1、负责小红书搜广推业务线的机器学习训练框架的研发与迭代,核心支持公司所有相关业务场景; 2、深入参与分布式训练、自动并行化、参数服务器、特征样本流水线等系统底层功能的创新设计与优化,实现软硬件协同的极致训练效率; 3、跨团队合作,与公司算法部门深度协同,针对关键项目开展算法与系统的联合优化,推动解决实际业务挑战; 4、推动自动化扩展、智能资源调度、跨架构设备兼容(NV GPU、GPGPU、XPU等)、AI系统可观测性等先进技术在公司模型训练平台落地; 5、跟踪并推动AI系统领域的最新技术趋势(如生成式推荐、AI编译优化、RDMA/NCCL通信计算并发等),持续保持平台业界领先优势。

更新于 2025-11-11北京|上海
logo of bytedance
校招A101228

团队介绍:字节跳动剪映研发团队,主要支持剪映、醒图、Faceu 等多款国内外产品的研发工作,业务覆盖多元化影像创作场景,截止2021年6月,相关产品多次登顶国内外App Store 免费应用榜第一,并继续保持高速增长。加入我们,一起打造全球最受用户欢迎的影像创作产品。 课题介绍: 1)课题背景: 1、数字化营销时代,企业对高质量、多样化营销素材的需求呈爆发式增长。从社交媒体图文到短视频广告,从个性化推荐文案到多模态互动内容,营销场景的复杂化与用户需求的碎片化对素材生成效率、创意水平和精准度提出了更高要求。传统依赖人工策划与设计的模式成本高、周期长,难以满足实时化、动态化、规模化的业务需求。尽管生成式AI(AIGC)技术(如GPT等)已在文本、图像生成领域取得突破,但在营销场景中仍面临创意适配性差、多模态协同能力弱、品牌一致性难保障等瓶颈。本课题旨在研发“创作领域Agent”,通过智能技术实现从策略洞察到内容生产的全链路自动化,推动营销效率与效果的革命性升级。 2、随着大语言模型、多模态模型等大模型的成熟,通过视觉理解、语音识别、文本生成等AI大模型能力,提升视频剪辑效率,基于创作者的需求和创意,高效的创作出炫酷、个性化的视频成为了可能。当前行业虽已有部分智能剪辑工具,但大多局限于规则化操作,成片或缺乏对用户意图的理解,效果同质化,或缺乏成片逻辑与情感,机械堆砌素材。 本课题旨在研究适合视频剪辑的大模型技术,结合剪映平台的强大剪辑能力和效果,打造一个智能剪辑的智能体(Agent),赋能自媒体内容生产、影视工业化、广告营销等场景。 2)课题挑战: 1、创意与商业价值的平衡:AI生成内容易陷入同质化,需突破算法在品牌调性理解、用户情感共鸣、营销目标对齐等方面的局限,确保创意兼具新颖性与商业转化价值。 2、多模态动态协同:文本、图像、视频等模态的生成需实现语义与风格的跨模态对齐,且需支持动态组合与实时迭代(如根据用户反馈即时优化素材)。 3、复杂场景泛化能力:营销场景高度细分(如电商促销、品牌故事、危机公关),Agent需具备上下文感知与领域迁移能力,避免“一刀切”生成策略。 4、计算效率与资源限制:高分辨率视觉素材生成、多版本AB测试等场景对算力需求极高,需优化模型轻量化与推理速度,满足企业级部署的可行性。 5、伦理与合规风险:需解决版权争议(如AI生成素材的版权归属)、内容安全(如虚假宣传、文化敏感性)等问题,构建可信可控的生成框架。 6、视频数据复杂性远超图片和文字,巨量的用户素材,要通过大模型去精准理解,并与图片、音频、文字等多模态特征统一,对多模态模型理解能力和推理优化,提出了极高要求。 7、大模型对素材编排和剪辑的结果,可能偏离用户真实意图,既要避免输出模板化、同质化,又要结合用户个性化和创意,在风格、节奏等维度上加入“人性化创意”。 8、大参数模型训练成本高,推理慢,如何通过模型优化、工程优化等手段,给移动端、PC等终端用户极致的体验,也是课题的一大挑战。 1、负责剪映CapCut的AI视频编辑方向的Agent模型训练与评测,使用SFT/RLHF/Post-training等技术对视频创作进行领域知识建模; 2、提升视频创作Agent大模型的增强模型和安全能力的指令遵从能力、提升Pre-trained Model在视频创作的能力,构建行业领先的视频创作专家的智能Agent。

更新于 2025-05-26深圳
logo of bytedance
校招A49089

团队介绍:字节跳动剪映研发团队,主要支持剪映、醒图、Faceu 等多款国内外产品的研发工作,业务覆盖多元化影像创作场景,截止2021年6月,相关产品多次登顶国内外App Store 免费应用榜第一,并继续保持高速增长。加入我们,一起打造全球最受用户欢迎的影像创作产品。 课题介绍: 1)课题背景: 1、数字化营销时代,企业对高质量、多样化营销素材的需求呈爆发式增长。从社交媒体图文到短视频广告,从个性化推荐文案到多模态互动内容,营销场景的复杂化与用户需求的碎片化对素材生成效率、创意水平和精准度提出了更高要求。传统依赖人工策划与设计的模式成本高、周期长,难以满足实时化、动态化、规模化的业务需求。尽管生成式AI(AIGC)技术(如GPT等)已在文本、图像生成领域取得突破,但在营销场景中仍面临创意适配性差、多模态协同能力弱、品牌一致性难保障等瓶颈。本课题旨在研发“创作领域Agent”,通过智能技术实现从策略洞察到内容生产的全链路自动化,推动营销效率与效果的革命性升级。 2、随着大语言模型、多模态模型等大模型的成熟,通过视觉理解、语音识别、文本生成等AI大模型能力,提升视频剪辑效率,基于创作者的需求和创意,高效的创作出炫酷、个性化的视频成为了可能。当前行业虽已有部分智能剪辑工具,但大多局限于规则化操作,成片或缺乏对用户意图的理解,效果同质化,或缺乏成片逻辑与情感,机械堆砌素材。 本课题旨在研究适合视频剪辑的大模型技术,结合剪映平台的强大剪辑能力和效果,打造一个智能剪辑的智能体(Agent),赋能自媒体内容生产、影视工业化、广告营销等场景。 2)课题挑战: 1、创意与商业价值的平衡:AI生成内容易陷入同质化,需突破算法在品牌调性理解、用户情感共鸣、营销目标对齐等方面的局限,确保创意兼具新颖性与商业转化价值。 2、多模态动态协同:文本、图像、视频等模态的生成需实现语义与风格的跨模态对齐,且需支持动态组合与实时迭代(如根据用户反馈即时优化素材)。 3、复杂场景泛化能力:营销场景高度细分(如电商促销、品牌故事、危机公关),Agent需具备上下文感知与领域迁移能力,避免“一刀切”生成策略。 4、计算效率与资源限制:高分辨率视觉素材生成、多版本AB测试等场景对算力需求极高,需优化模型轻量化与推理速度,满足企业级部署的可行性。 5、伦理与合规风险:需解决版权争议(如AI生成素材的版权归属)、内容安全(如虚假宣传、文化敏感性)等问题,构建可信可控的生成框架。 6、视频数据复杂性远超图片和文字,巨量的用户素材,要通过大模型去精准理解,并与图片、音频、文字等多模态特征统一,对多模态模型理解能力和推理优化,提出了极高要求。 7、大模型对素材编排和剪辑的结果,可能偏离用户真实意图,既要避免输出模板化、同质化,又要结合用户个性化和创意,在风格、节奏等维度上加入“人性化创意”。 8、大参数模型训练成本高,推理慢,如何通过模型优化、工程优化等手段,给移动端、PC等终端用户极致的体验,也是课题的一大挑战。 1、负责剪映CapCut的AI视频编辑方向的Agent模型训练与评测,使用SFT/RLHF/Post-training等技术对视频创作进行领域知识建模; 2、提升视频创作Agent大模型的增强模型和安全能力的指令遵从能力、提升Pre-trained Model在视频创作的能力,构建行业领先的视频创作专家的智能Agent。

更新于 2025-05-26杭州
logo of bytedance
校招A17897

团队介绍:字节跳动剪映研发团队,主要支持剪映、醒图、Faceu 等多款国内外产品的研发工作,业务覆盖多元化影像创作场景,截止2021年6月,相关产品多次登顶国内外App Store 免费应用榜第一,并继续保持高速增长。加入我们,一起打造全球最受用户欢迎的影像创作产品。 课题介绍: 1)课题背景: 1、数字化营销时代,企业对高质量、多样化营销素材的需求呈爆发式增长。从社交媒体图文到短视频广告,从个性化推荐文案到多模态互动内容,营销场景的复杂化与用户需求的碎片化对素材生成效率、创意水平和精准度提出了更高要求。传统依赖人工策划与设计的模式成本高、周期长,难以满足实时化、动态化、规模化的业务需求。尽管生成式AI(AIGC)技术(如GPT等)已在文本、图像生成领域取得突破,但在营销场景中仍面临创意适配性差、多模态协同能力弱、品牌一致性难保障等瓶颈。本课题旨在研发“创作领域Agent”,通过智能技术实现从策略洞察到内容生产的全链路自动化,推动营销效率与效果的革命性升级。 2、随着大语言模型、多模态模型等大模型的成熟,通过视觉理解、语音识别、文本生成等AI大模型能力,提升视频剪辑效率,基于创作者的需求和创意,高效的创作出炫酷、个性化的视频成为了可能。当前行业虽已有部分智能剪辑工具,但大多局限于规则化操作,成片或缺乏对用户意图的理解,效果同质化,或缺乏成片逻辑与情感,机械堆砌素材。 本课题旨在研究适合视频剪辑的大模型技术,结合剪映平台的强大剪辑能力和效果,打造一个智能剪辑的智能体(Agent),赋能自媒体内容生产、影视工业化、广告营销等场景。 2)课题挑战: 1、创意与商业价值的平衡:AI生成内容易陷入同质化,需突破算法在品牌调性理解、用户情感共鸣、营销目标对齐等方面的局限,确保创意兼具新颖性与商业转化价值。 2、多模态动态协同:文本、图像、视频等模态的生成需实现语义与风格的跨模态对齐,且需支持动态组合与实时迭代(如根据用户反馈即时优化素材)。 3、复杂场景泛化能力:营销场景高度细分(如电商促销、品牌故事、危机公关),Agent需具备上下文感知与领域迁移能力,避免“一刀切”生成策略。 4、计算效率与资源限制:高分辨率视觉素材生成、多版本AB测试等场景对算力需求极高,需优化模型轻量化与推理速度,满足企业级部署的可行性。 5、伦理与合规风险:需解决版权争议(如AI生成素材的版权归属)、内容安全(如虚假宣传、文化敏感性)等问题,构建可信可控的生成框架。 6、视频数据复杂性远超图片和文字,巨量的用户素材,要通过大模型去精准理解,并与图片、音频、文字等多模态特征统一,对多模态模型理解能力和推理优化,提出了极高要求。 7、大模型对素材编排和剪辑的结果,可能偏离用户真实意图,既要避免输出模板化、同质化,又要结合用户个性化和创意,在风格、节奏等维度上加入“人性化创意”。 8、大参数模型训练成本高,推理慢,如何通过模型优化、工程优化等手段,给移动端、PC等终端用户极致的体验,也是课题的一大挑战。 1、负责剪映CapCut的AI视频编辑方向的Agent模型训练与评测,使用SFT/RLHF/Post-training等技术对视频创作进行领域知识建模; 2、提升视频创作Agent大模型的增强模型和安全能力的指令遵从能力、提升Pre-trained Model在视频创作的能力,构建行业领先的视频创作专家的智能Agent。

更新于 2025-05-26北京