快手商业产品实习生(喜番业务)-【商业化】
任职要求
1、具备独立思考、项目推进能力和团队协作能力,对增长、短剧内容有一定基础理解; 2、极佳的用户sen…
工作职责
1、负责喜番APP的拉新与留存,通过分析用户行为特征,制定投放增长策略,联动下游合作团队,在不同渠道进行精准投放,提升喜番用户规模; 2、对用户生命周期负责,参与新用户承接转化,用户留存等核心指标优化; 3、通过数据以及用户行为等方向分析,寻找增长机会,完成功能的策划、设计与落地。
1、负责喜番短剧业务,对app的dau、时长增长负责,熟悉增长的通用手段(投放、导流、金币激励),熟悉c端功能落地的全链路; 2、聚焦短剧拉新、留存、消费、变现等环节的规模和效率,与ug、推荐、运营团队协作,落地相关产品解决方案; 3、需要与各业务方沟通,包括设计、研发、算法、测试、数据等,需充了解c端用户诉求以及通用的解决方案,能独立完成PRD和产品原型设计,推进项目上线; 4、对数据有敏感度,需要有基本的数据分析能力,根据已有的数据判断产品后续更新迭代的方向。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练 Pipline; 2、研发支持多机多卡 RL 的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决 RL 算法在超长时序下的显存/通信瓶刭 3、构建端到端后训练工具链,主导框架与 MLOps 平台集成,提供训练可视化、自动超参搜索等生产级能力 4、与公司各算法部门深度合作,参与大语言模型LLM、多模态大模型 MLLM等业务在 SFT/RL领域的算法探索和引擎迭代; 5、参与分析各业务 GPU 利用率与饱和度等指标,结合业务场景持续优化训练框架能力,提升框架领先性。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与/负责研发面向大语言模型(LLM)/多模态大模型(MLLM)等类型模型的推理服务框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,打造高效、易用、领先的AI推理框架; 2、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等; 3、与全公司各业务算法部门深度合作,为重点项目进行算法与系统的联合优化,支撑业务目标达成。
中台稠密引擎组,是小红书负责建设通用深度学习训练推理引擎的团队,面向全公司LLM、多模态LLM、SD、传统CV&NLP等稠密计算型模型训练与推理的业务场景,打造高效、易用、业界领先的训练与推理引擎,为小红书社区、商业化、安全等众多业务方向提供先进的引擎能力,支撑业务持续提升训练推理效率、模型迭代效率与算法研发效率。 1、参与设计和实现深度学习后训练及微调的前沿算法(包括但不限于RFT、RLHF等),以适应多样化的业务场景; 2、结合业务数据和场景,评估选择最适合的微调算法,以支撑业务大语言模型(LLM)微调指标的提升; 3、与数据团队紧密合作,深入理解数据特性,参与设计实现数据提质算法引擎工具,产出高质量数据集提升模型微调效果; 4、与公司内各算法团队深度合作,参与或负责大语言模型、多模态大模型等业务场景的后训练端到端效果提升及落地; 5、密切关注业界 LLM 微调算法和数据提质领域的前沿论文,并整合新技术和算法到训练引擎中,提升框架的领先性;