快手【留用实习】异构计算平台优化工程师
实习兼职J1020地点:上海 | 北京状态:招聘
任职要求
1、本科及以上学历,深入理解处理器体系结构(X86/ARM)或者常见GPGPU/NPU系统架构,了解CPU/GPU微架构、PMU等相关子领域; 2、对AI领域的基本理论与常见模型算法有深刻理解,熟练使用tensorflow或pytorch进行模型训练或tensorrt/tvm做推理优化,对使用GPU做AI算法加速有相关经历,熟悉GPU CUDA编程; 3、深入理解操作系统架构和实现原理,熟练掌握问题定位手段(perf、SystemTap、eBPF),精通软硬件系统性能分析及优化; 4、熟悉Linux kernel、虚拟化系统(KVM/QEMU/…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1、负责依据不同业务场景的特点和新硬件特性,结合系统软硬件栈的整体调优,提出并实施性能优化方案; 2、负责持续跟踪业内软硬件相关领域的技术发展趋势,结合不同业务场景未来需求,开展方案预研以及推广应用工作。 具体包括以下两种场景或者两种之一: 1)AI计算相关场景,例如:大模型训练场景,AIGC、NLP、推荐等常规推理场景; 2)以容器云、大数据计算平台为例的通用计算平台场景。
包括英文材料
学历+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
Perf+
https://perfwiki.github.io/main/
perf is powerful: it can instrument CPU performance counters, tracepoints, kprobes, and uprobes (dynamic tracing).
https://www.brendangregg.com/bpf-performance-tools-book.html
This book can help you get the most out of your systems and applications, helping you improve performance, reduce costs, and solve software issues.
[英文] perf Examples
https://www.brendangregg.com/perf.html
These are some examples of using the perf Linux profiler, which has also been called Performance Counters for Linux (PCL), Linux perf events (LPE), or perf_events.
https://www.youtube.com/watch?v=M6ldFtwWup0
eBPF+
https://ebpf.io/get-started/
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
还有更多 •••
相关职位
实习J1020
1.参与AI与GPU相关项目的性能优化与研发,通过利用CPU、GPU的并行计算优化、架构优化、量化优化和异构调度等高性能优化技术,研发行业领先的高性能异构AI优化技术与编译优化技术; 2.针对搜索、推荐、广告、音视频以及大模型场景,优化模型训练和推理场景的性能; 3.与公司各算法部门深度合作,对重点项目进行算法与系统的联合优化。
更新于 2025-03-31杭州|北京
实习J1014
1、负责容器云平台的一个或多个领域的设计与开发; 2、基于Kubernetes完善统一调度、多集群联邦能力,提升集群运维效率; 3、基于但不限于servicemesh技术栈,实现微服务架构业务&离线计算任务的流量管控、链路追踪等基础能力; 4、负责公司混合计算平台及相关技术的设计与开发,提升异构资源管理效率; 5、结合容器领域前沿技术,负责容器云全局技术优化与落地实践。
更新于 2025-05-20杭州|北京
实习J1020
1. 负责分布式大语言模型 (LLM) 推理系统的底层基础设施研究与探索,包括 GPU 和 RDMA 等,提升 GPU 环境下的稳定性和计算效率; 2. 负责大规模模型训练场景优化工作,通过建设全面的异常发现、故障自愈机制,提升平台训练 MFU,降低训练成本; 3. 基于容器以及 Kubernetes 技术,负责对机器学习领域中的资源调度、模型训练、模型推理、数据管理等多个子方向的成本效率优化工作; 4. 持续关注并跟进业界技术发展,比如超长上下文、思维链、多模态方向;
更新于 2025-03-31杭州