快手【快Star-X】多模态大模型数据处理算法工程师
实习兼职J1001地点:北京 | 深圳状态:招聘
任职要求
1、计算机、统计学、数学或相关专业硕士及以上学历,具备丰富的机器学习、大模型训练及数据处理项目经验,拥有扎实的数据分析与建模基础; 2、熟练使用 Python、SQL 等分析工具,掌握常用数据分析与可视化工具(如 Pandas、Table…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1、数据特征算法方案制定与效果优化:针对不同模态、多种类目的数据,设计自动化筛选方案;对多模态数据涉及的前沿特征算法(如物体跟踪、ID 重识别、音频分离)进行场景化效果优化。与算法工程师协作,制定数据调整与扩展策略,提升模型在真实场景中的生成能力; 2、数据 pipeline 建设:负责多模态大模型训练数据的构建与管理,参与数据筛选、标注及质量评估工作。分析和挖掘现有数据资源,设计有效的数据分布策略,支持模型持续迭代; 3、数据分布分析:对模型训练数据分布进行详细分析,识别数据偏差、不均衡及潜在问题。提供可视化报告及改进建议,确保训练数据覆盖目标场景并满足多样性需求,最终通过数据驱动方法优化视频生成大模型效果。
包括英文材料
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
GBDT+
https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt
Like bagging and boosting, gradient boosting is a methodology applied on top of another machine learning algorithm.
https://scikit-learn.org/stable/modules/ensemble.html
Ensemble methods combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
还有更多 •••
相关职位
校招J1020
1、参与多模态模型、视频生成模型等大模型的全链路数据生产流水线搭建; 2、参与多模态数据处理所需的LLM/VLM模型推理、跨模态检索、跨模态对齐等工程系统的建设; 3、基于各类分布式数据处理以及推理优化技术,持续优化超大规模多模态数据处理的推理、存储以及检索效率。
更新于 2025-06-27北京
校招J1006
1、探索和打造下一代 AI 驱动的广告生成、推荐与竞价系统。致力于将 AIGC、大语言模型(LLM)、多模态大模型(MLLM)、博弈论以及强化学习(RL)等前沿技术,应用于业务的各个核心环节,提升平台商业效率与用户体验。 2、参与端到端大模型应用系统的设计与落地,涵盖模型训练、算法优化、系统部署及业务集成; 3、深入研究大模型在广告创意生成、广告推荐、机制设计、用户建模、Query建模、智能竞价等领域的创新应用; 4、与业务、产品、系统、平台等多团队紧密合作,在真实超大规模数据和复杂业务场景中打磨技术; 5、持续跟进行业前沿技术,探索具备商业价值与学术创新的解决方案,推动技术落地与规模化应用。
更新于 2025-06-24北京
实习J1005
1、探索大模型与推荐算法结合的下一代推荐系统技术,充分利用大模型的领域知识和学习范式为推荐系统注入新的能量,包括但不限于文本/ID生成式推荐、模型Scaling Law、用户超长序列端到端建模等; 2、探索视频、文本和语音等多模态信号的高效处理方式以及与推荐系统对齐的能力,让推荐系统看懂、听懂和理解世界; 3、混合专家、蒸馏剪枝等兼顾模型性能和效果的技术探索; 4、紧跟行业及大模型技术发展,结合业界前沿技术和业务需求,打造大模型应用的最佳实践。
更新于 2025-05-12北京