快手AI Infra 研发工程师
校招全职J1020地点:杭州 | 北京状态:招聘
任职要求
1、本科及以上学历,计算机相关专业; 2、掌握常用数据结构与算法,具备扎实的编程基础和良好的编码习惯; 3、熟悉至少一种编程语言(如 Golang、Java、Python 等); 4、有 Docker、Kubernetes、vLLM、SGLang、RouteLLM 等技术的学习或实践经验者优先,参与过开源项目更佳; 5、积极主动,自驱力强,具备良好的团队合作精神和解决问题的能力; 6、对如下一个或多个领域有浓厚的兴趣,并愿意付出自己的时间进行深入研究和探索: a. 机器学习框架:PyTorch、TensorFlow等机器学习框架、GPU等异构计算芯片及优化、MLOps、CV/NLP/搜广推等领域模型算法等; b. 云原生:Kubernetes及容器系统、大规模训练任务和推理服务编排和调度、镜像加速等。
工作职责
1、负责分布式大语言模型 (LLM) 推理系统的底层基础设施研究与探索,包括 GPU 和 RDMA 等,提升 GPU 环境下的稳定性和计算效率; 2、负责大规模模型训练场景优化工作,通过建设全面的异常发现、故障自愈机制,提升平台训练 MFU,降低训练成本; 3、基于容器以及 Kubernetes 技术,负责对机器学习领域中的资源调度、模型训练、模型推理、数据管理等多个子方向的成本效率优化工作; 4、持续关注并跟进业界技术发展,比如超长上下文、思维链、多模态方向。
包括英文材料
学历+
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
编程规范+
[英文] Google Style Guides
https://google.github.io/styleguide/
Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that project. It is much easier to understand a large codebase when all the code in it is in a consistent style.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
vLLM+
https://www.newline.co/@zaoyang/ultimate-guide-to-vllm--aad8b65d
vLLM is a framework designed to make large language models faster, more efficient, and better suited for production environments.
https://www.youtube.com/watch?v=Ju2FrqIrdx0
vLLM is a cutting-edge serving engine designed for large language models (LLMs), offering unparalleled performance and efficiency for AI-driven applications.
SGLang+
[英文] Install SGLang
https://docs.sglang.ai/get_started/install.html
SGLang is a fast serving framework for large language models and vision language models.
https://github.com/sgl-project/sgl-learning-materials
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
相关职位
社招网易有道
1. 结合HPC和AI前沿技术,设计和优化大模型训练和推理框架,负责模型优化、算子优化、图优化、分布式优化等,提升计算效率; 2. 负责云侧或端侧大模型和小模型推理服务开发、性能优化、上线等工作。
更新于 2025-05-23
社招5年以上CSIG技术
1.负责 deepseek 等AI大模型在 K8s 上的推理部署方案研发,深度对接客户场景; 2.负责AI Infra相关能力在TKE的落地,如AI 相关工作负载的设计与研发,降低用户使用成本; 3.通过优化 AI 部署的计算、网络、存储相关资源,提升训练及推理效率; 4.负责推理稳定性、亲和性调度、推理框架优化、GPU池化等相关工作,降低推理成本,提升推理效率。
更新于 2025-06-05
实习J1020
1. 负责分布式大语言模型 (LLM) 推理系统的底层基础设施研究与探索,包括 GPU 和 RDMA 等,提升 GPU 环境下的稳定性和计算效率; 2. 负责大规模模型训练场景优化工作,通过建设全面的异常发现、故障自愈机制,提升平台训练 MFU,降低训练成本; 3. 基于容器以及 Kubernetes 技术,负责对机器学习领域中的资源调度、模型训练、模型推理、数据管理等多个子方向的成本效率优化工作; 4. 持续关注并跟进业界技术发展,比如超长上下文、思维链、多模态方向;
更新于 2025-03-31