网易AI Infra研发工程师
社招全职网易有道地点:北京状态:招聘
任职要求
1. 统招本科及以上学历; 2. 精通C/C++、python编程,熟悉常用数据结构; 3. 了解transformer的结构,了解模型训练、微调和推理的过程和原理; 4. 热爱技术,可以快速学习新技术,快速掌握HPC和AI前沿技术; 5. 有以下一项或多项技术能力者优先: * 有GPU、NPU、ARM、或其他AI芯片等平台上AI落地实践经验; * 熟悉并行计算和分布式计算技术,有 MPI、OpenMP、CUDA 等编程经验,或有PTX、汇编优化方法; * 熟悉模型训练框架如Deepspeed、Megatron,pytorch等; * 熟悉TensorRT-LLM、vLLM、sglang等任一推理框架,有实际操作经验; *熟悉多层次的软件优化经验,如模型剪枝/量化/压缩、分布式优化(PD分离)、存储优化、kv-cache优化、动态Batching、IO优化、算子/指令集优化等。
工作职责
1. 结合HPC和AI前沿技术,设计和优化大模型训练和推理框架,负责模型优化、算子优化、图优化、分布式优化等,提升计算效率; 2. 负责云侧或端侧大模型和小模型推理服务开发、性能优化、上线等工作。
包括英文材料
学历+
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
HPC+
https://www.ibm.com/think/topics/hpc
HPC is a technology that uses clusters of powerful processors that work in parallel to process massive, multidimensional data sets and solve complex problems at extremely high speeds.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
Megatron+
https://www.youtube.com/watch?v=hc0u4avAkuM
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
vLLM+
https://www.newline.co/@zaoyang/ultimate-guide-to-vllm--aad8b65d
vLLM is a framework designed to make large language models faster, more efficient, and better suited for production environments.
https://www.youtube.com/watch?v=Ju2FrqIrdx0
vLLM is a cutting-edge serving engine designed for large language models (LLMs), offering unparalleled performance and efficiency for AI-driven applications.
缓存+
https://hackernoon.com/the-system-design-cheat-sheet-cache
The cache is a layer that stores a subset of data, typically the most frequently accessed or essential information, in a location quicker to access than its primary storage location.
https://www.youtube.com/watch?v=bP4BeUjNkXc
Caching strategies, Distributed Caching, Eviction Policies, Write-Through Cache and Least Recently Used (LRU) cache are all important terms when it comes to designing an efficient system with a caching layer.
https://www.youtube.com/watch?v=dGAgxozNWFE
相关职位
校招J1020
1、负责分布式大语言模型 (LLM) 推理系统的底层基础设施研究与探索,包括 GPU 和 RDMA 等,提升 GPU 环境下的稳定性和计算效率; 2、负责大规模模型训练场景优化工作,通过建设全面的异常发现、故障自愈机制,提升平台训练 MFU,降低训练成本; 3、基于容器以及 Kubernetes 技术,负责对机器学习领域中的资源调度、模型训练、模型推理、数据管理等多个子方向的成本效率优化工作; 4、持续关注并跟进业界技术发展,比如超长上下文、思维链、多模态方向。
更新于 2025-07-30
社招5年以上CSIG技术
1.负责 deepseek 等AI大模型在 K8s 上的推理部署方案研发,深度对接客户场景; 2.负责AI Infra相关能力在TKE的落地,如AI 相关工作负载的设计与研发,降低用户使用成本; 3.通过优化 AI 部署的计算、网络、存储相关资源,提升训练及推理效率; 4.负责推理稳定性、亲和性调度、推理框架优化、GPU池化等相关工作,降低推理成本,提升推理效率。
更新于 2025-06-05
实习J1020
1. 负责分布式大语言模型 (LLM) 推理系统的底层基础设施研究与探索,包括 GPU 和 RDMA 等,提升 GPU 环境下的稳定性和计算效率; 2. 负责大规模模型训练场景优化工作,通过建设全面的异常发现、故障自愈机制,提升平台训练 MFU,降低训练成本; 3. 基于容器以及 Kubernetes 技术,负责对机器学习领域中的资源调度、模型训练、模型推理、数据管理等多个子方向的成本效率优化工作; 4. 持续关注并跟进业界技术发展,比如超长上下文、思维链、多模态方向;
更新于 2025-03-31