logo of tesla

特斯拉0-2年毕业生-AI算法工程师-上海

校招全职信息技术地点:上海状态:招聘

任职要求


• Master's or PhD student in Computer Science, Electronic Engineering, Mathematics, Statistics, or related fields (graduating soon or within 2 years of graduation);

• Solid mathematical foundation, familiar with linear algebra, probability and statistics, optimization theory, and related knowledge.

• Familiar with deep learning frameworks (such as TensorFlow, PyTorch) and common algorithms (such as CNN, RNN, Transformer, etc.);

• Proficient in one programming language (such as Python), with development experience in multiple other languages (such as C++, Go), and proficient experience in code development and testing.

• Maintain a strong curiosity in cutting-edge technologies in the AI field, with relevant project experience or contributions to open-source projects;

• Strong learning ability, good at communication, and able to quickly integrate into the team and complete task deliveries.

工作职责


The Role

We are seeking a student who is passionate about artificial intelligence and algorithms to join our technical team, participate in the design and development of real-world projects, enhance your professional skills, and accumulate valuable practical experience. As an AI Algorithm Engineer, you will collaborate closely with senior algorithm engineers and data scientists, delve into cutting-edge technologies in the field of artificial intelligence, and transform theoretical knowledge into practical abilities through real projects.


Responsibilities

• Participate in the algorithm design and development of AI-related projects, including but not limited to areas such as deep learning, natural language processing, computer vision, and reinforcement learning.

• Build, train, and optimize AI models, and assist the team in completing model evaluation and data analysis.

• Read, understand, and write cutting-edge papers in related fields, explore new technologies, and attempt to implement them.

• Assist the IT Application team in completing data processing, feature engineering, and other digital tasks.

• Learn and master the team's existing code repos and toolchain, and complete the development and optimization of specific modules.

• You will collaborate closely with senior algorithm engineers and data scientists, delve into cutting-edge technologies in the field of artificial intelligence, and transform theoretical knowledge into practical abilities through real projects.
包括英文材料
TensorFlow+
PyTorch+
CNN+
RNN+
Transformer+
Python+
C+++
Go+
相关职位

logo of tesla
校招信息技术

The Role Tesla’s Data Algorithms team is at the forefront of industrial intelligence R&D. Through our self-developed data and algorithm platform, we empower critical business areas such as manufacturing, supply chain, sales, service, and charging networks, transforming massive data into high-value assets that drive better products and enhanced user experiences. As a new graduate joining our team, you will begin contributing from day one to the development and deployment of core algorithm products. You will take part in the full pipeline—from data collection and preprocessing to model training and production deployment. If you're passionate about artificial intelligence and excited about the latest trends in computer vision, this is the perfect opportunity to turn your knowledge into real-world impact. This position focuses on computer vision applications in industrial scenarios, including but not limited to: defect detection, visual guidance, dimensional measurement, and the exploration and application of large vision models. Responsibilities • Participate in internal computer vision projects, design and implement image processing and recognition solutions, and drive them to production. • Handle image data collection, organization, filtering, and preprocessing, and perform model training, optimization, and iteration. • Explore the application of multimodal large models in industrial use cases, and research innovative solutions in areas such as few-shot detection and video understanding. • Stay up-to-date with the latest trends in computer vision and AI, and propose technical solutions tailored to Tesla's business challenges. Required

更新于 2025-09-24
logo of nio
校招算法

项目内容介绍: 人工智能和大模型数据智能服务项目。主要分为以下两个方向: 1、GPT应用平台场景,打造企业级一站式大模型平台,提供先进的生成式AI生产及应用全流程开发工具链;支持了公司辅助营销、智能客服等众多智能化应用。 2、整车行业智能化场景的解决方案,包括;研发和生产数字化、数字化营销和服务等。 - 通过先进的数据分析和人工智能算法,实现生产资源的优化配置和生产流程的精细化管理; - 通过AI检测提高产品质量、提升生产效率、降低生产成本以及优化生产工艺; - 通过AI的数据挖掘和分析,为产品设计、制造、测试等环节提供决策支持; - 通过AI辅助生成营销文案,处理大量的客户咨询和服务请求,降低运营成本,提高效率等。 职位描述: 1. 深入参与公司在大模型、深度学习等前沿领域的研究和开发工作; 2. 负责关键算法的设计、实现与优化,解决技术难题,提升产品性能; 3. 与产品、工程团队紧密合作,确保项目的顺利推进; 4. 跟踪业界最新学术论文与技术动态,进行技术预研和储备,为公司的发展提供有力支持;

更新于 2025-07-29
logo of tesla
校招智能制造

THE ROLE 作为电驱车间焊接工艺工程师,你先经过特斯拉电驱工艺的培训和学习,将整体负责车间焊接的相关工作,侧重激光焊接方向,具体工作包括焊接现场问题的解决和焊接工艺的改进,如工艺参数的调整、设备故障修复、设备结构优化等,结合AI与视觉技术,负责进行焊接新技术的研究和智能化的升级,如焊接过程质量监控的增强,焊接系统的预测性维护等,同时负责参与技术标准的制定和技术文件的编制,在这里你将接触到行业领先的焊接技术、特斯拉独有的电机制造工艺及AI与视觉技术,获取行业顶尖的资源,助力你成为焊接制造领域的技术专家;扁平化的组织架构,多样化的职业发展通道助你快速成长。 RESPONSIBILITIES职责描述: 负责车间焊接技术标准的制定,新项目焊接工艺的工艺规划、设备选型、项目实施、验收交付等; 负责牵头解决与焊接相关的现场问题,包括工艺参数调整,设备故障修复,设备结构优化等; 负责结合AI与视觉技术,持续研究、优化焊接工艺及设备,主导车间焊接技术进步,提高生产线的稳定性及制造质量的一次合格率; 牵头负责产线焊接设备的维护、保养等工作; 负责编写焊接相关的工艺文件,如PF,PFMEA,控制计划等; 遵守公司规章制度,严格按照作业指导书工作,积极查找安全隐患,及时汇报安全隐患和事故,提出安全合理化建议,通过不断改进,创造安全健康的工作环境 REQUIREMENTS

更新于 2025-09-09
logo of hello
社招量天尺计划

我们希望你是 2024年11月-2026年10月 期间毕业的 博士/硕士研究生 同时也是: 学术先锋:在国内外顶刊/顶会上发表过重要学术论文(包括但不限于NeurIPS、ICML、CVPR、ICCV、ECCV 等顶会或 IEEE Transactions 系列核心期刊) 竞赛达人:在国内外顶尖赛事中取得优秀成绩(包括但不限于RoboMaster、Topcoder、Codeforces、ACM-ICPC、RoboCup) 实战高手:有自动驾驶、机器人、大模型基座,复杂Agent相关科研项目或实习经历(包括但不限于感知算法优化、决策模型开发,复杂多Agent的搭建等) 同频共振:理性务实、敢想敢干、渴望成功、乐观激进、聪明自省 工作内容: 1. 负责AI模型训练和推理流程的深度优化,包括多机多卡分布式训练方案,保障高效稳定的训练速度和推理性能,熟悉并应用TP/PP/DP/EP/ZeRO等分布式或并行优化策略,充分挖掘硬件性能。 2. 优化并行训练策略与分布式训练框架,提高模型可扩展性和集群资源利用率,解决分布式训练中的负载均衡、同步机制、通信瓶颈等问题。 3. 研究并实践模型压缩、量化(包括量化KV cache)、剪枝、FlashAttention等加速技术,缩短推理时延,降低部署成本,与算法团队合作,针对应用场景进行模型结构的裁剪和定制化。 4. 对接基础设施团队,优化集群算力、显存和带宽等资源的调度与使用效率,分析并持续降低训练和推理的总体计算成本。 5. 利用NVIDIA Nsight Compute和PyTorch Profiler等工具,深入分析模型性能瓶颈,挖掘硬件和算法的潜力。 6. 关注AI加速领域最新研究进展及产业动态,对新技术进行可行性评估与引入,主动探索并落地新型训练优化策略或加速引擎。

更新于 2025-09-26