滴滴AI Selection 算法实习生
任职要求
计算机或相关专业; 优秀的编程能力,熟悉C/C++,熟悉常用数据结构与算法; 熟悉Linux开发环境; 掌握计算机相关基础知识,具备优秀的数学能力,熟悉常用的机器学习算法与理论; 具备良好的沟通及团队合作能力; 若能满足如下条件的其中一个,会适当加分: 有自动驾驶系统算法开发经验,如路径规划等; 有推荐算法开发经验; 有机器人开发相关经验; 有ACM编程竞赛类奖项; 会开车;
工作职责
运用道路,周围车辆行人等交通信息,对自动驾驶汽车的行驶行为作出决策和控制。所负责的路径规划模块是自动驾驶最核心的模块之一。 参与并负责以下工作: - 运用机器学习提升自动驾驶汽车的决策能力 - 通过路测,仿真大数据分析,更好的设计自动驾驶算法 - 开发数据生产pipeline和内部工具 - 低延时,高稳定性算法的设计与开发
1. 数据“蒸馏”算法: 研发主动学习(Active Learning)与核心集选择(Core-Set Selection)算法,从PB级数据中自动化地“炼”出信息密度最高的“黄金数据集”,实现训练成本与模型性能的最优平衡。 2. 难例(Hard-Case)挖掘算法: 构建多模态难例挖掘引擎,融合图像、点云与模型内部状态,主动“捕获”长尾和边缘场景,持续拓宽模型的能力边界。 3. 算法归因与可解释性(XAI): 基于可解释性AI与因果推断,开发自动化归因工具链。当模型失效时,能精准定位根因是来自数据、标注还是模型自身,实现从“现象”到“根因”的穿透。
职责模块:•System Architecture:; 职责描述:•Design and oversee end-to-end software architecture for embodied AI in home robots. •Define interfaces and protocols for system components. •Manage sensor and camera data for informed AI decision-making. •Guide middleware, simulation, and tool selection. -维护数据集版本控制和文档编写。 -整合用户和产品的反馈,以改进数据。 - 与算法工程师、产品经理和其他团队合作。; 权重:50%。 职责模块:•Integration & Optimization:; 职责描述:•Ensure seamless integration across hardware, AI algorithms, and cloud services. •Profile, debug, and optimize system performance. •Establish best practices for development, testing, and deployment.; 权重:25%。 职责模块:•Collaboration:; 职责描述:•Work with hardware, data science, and product teams to align technical and product goals. •Cooperate with researchers to design and develop advanced algorithms for perception, reasoning, planning, human-robot interaction (HRI) and emotional intelligence; 权重:15%。 职责模块:•Strategic Input; 职责描述:•Contribute to long-term vision and planning. •Represent the lab at conferences and industry events.; 权重:10%。

• Lead the architecture, design, and development of intelligent agent systems that integrate LLMs with real-world applications. • Drive full-stack engineering implementation, including backend services, API integration, database design, and task orchestration. • Select and optimize system components such as message queues, middleware, vector databases, and caching frameworks to meet performance and scalability targets. • Work closely with product and research teams to translate AI agent logic (e.g., tool-use, planning, reasoning) into robust, production-grade systems. • Take ownership of system performance tuning, including concurrency handling, throughput optimization, and service reliability. • Guide the team through best practices in code quality, CI/CD pipelines, and system observability. • Build and lead a team of engineers to deliver high-quality agent-driven applications from prototype to deployment.