
地平线视觉深度学习算法实习生(静态要素方向)
实习兼职算法序列地点:上海状态:招聘
任职要求
1、计算机视觉、模式识别、机器学习、电子信息、机器人等相关专业的硕士/博十在读; 2、熟悉主流深度学习算法,精通一/多个领域,包括但不限于目标检测、分割、跟踪、多任务学习、立体视觉等领域,有计算机视觉、模式识别领域顶会,(CVPR/ICCV/ECCV/ICML/NeurIPS)或顶刊(TPAMI/IJCV/TIP)作品者优先,顶级学术比赛获奖者或实际工程项目经验者优先; 3、掌握一种以上的深度学习训练框架(Pytorch,MXNet,Tensorflow...) 4、深入了解数据结构、算法、代码优化和大规模数据处理等相关知识; 5、精通 C/C++ 或 Python 编程,有ACM经验者优先
工作职责
1、负责ADAS、城区/高速NOA场景下的感知算法研发,包含交通灯、标识牌检测等空中要素检测工作; 2、探索2D\3D的检测,以及时序和多传感器融合算法; 3、负责核心算法或模型的原创设计以及工程化落地,如模型优化、评测体系化构建、case选代等; 4、掌握教据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化: 5、掌握通过数据闭环持续迭代模型的能力;
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
CVPR+
https://cvpr.thecvf.com/
ICCV+
https://iccv.thecvf.com/
ICCV is the premier international computer vision event comprising the main conference and several co-located workshops and tutorials.
ECCV+
https://eccv.ecva.net/
ECCV is the official event under the European Computer Vision Association and is biannual on even numbered years.
ICML+
https://icml.cc/
NeurIPS+
https://neurips.cc/
TPAMI+
https://www.computer.org/csdl/journal/tp
IEEE Transactions on Pattern Analysis and Machine Intelligence is a leader in artificial intelligence.
IJCV+
https://link.springer.com/journal/11263
International Journal of Computer Vision (IJCV) details the science and engineering of this rapidly growing field.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
MXNet+
https://www.tutorialspoint.com/apache_mxnet/index.htm
Apache MXNet is a powerful deep learning framework that supports both symbolic and imperative programming.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
相关职位

实习算法序列
1、负责ADAS、城区/高速NOA场景下的感知算法研发,包含交通灯、标识牌检测等空中要素检测工作; 2、探索2D\3D的检测,以及时序和多传感器融合算法; 3、负责核心算法或模型的原创设计以及工程化落地,如模型优化、评测体系化构建、case选代等; 4、掌握教据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化: 5、掌握通过数据闭环持续迭代模型的能力;
更新于 2025-02-21

实习算法序列
1、负责ADAS、城区/高速NOA场景下的感知算法研发,包含交通灯、标识牌检测等空中要素检测工作; 2、负责核心算法或模型的原创设计以及工程化落地,如模型优化、评测体系化构建、case迭代等; 3、掌握数据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化; 4、掌握通过数据闭环持续迭代模型的能力;
更新于 2025-09-28

实习算法序列
1、探索vla模型在复杂路口的场景理解能力以及对下游决策模块的提升; 2、负责核心算法或模型的原创设计以及工程化落地,如模型优化、评测体系化构建、case迭代等; 3、掌握数据挖掘、标注、训练、部署及badcase回归等闭环链路,并伴随业务开展持续优化; 4、掌握通过数据闭环持续迭代模型的能力;
更新于 2025-09-28