小红书架构师-大商业化(AI/研效/稳定性/基建)
任职要求
1、本科及以上学历(优先),计算机与科学相关专业,至少3年服务端开发经验,擅长Java; 2、能够对自身做的事情结果负责,有复杂业务系统的建设经营,过程中能够有自己的思考和理解;有稳定性经验和架构升级经验的优先; 3、熟悉常见的数据结构和算法,java基本功扎实;能够业内前沿技术能力解决工作中的问题; 4、熟悉并实施过分布式服务下高可用、高性能、高并发下的常见解决方案,熟悉mysql/redis/RPC/消息中间件/配置中心等常见中间件的使用和性能优化; 5、具备良好的抽象设计能力,能够预见性的设计架构,并随着业务发展和演进,能够分析和定义出当前技术体系在业务发展过程中遇到的问题并解决,具有较强的责任心和owner感; 6、善于交流,有良好的沟通能力和团队协作能力。
工作职责
【团队介绍】 我们是支持小红书电商、广告、本地生活技术团队的架构组,致力于为正在迅猛发展的小红书泛商业化场景提供强大支持并不断提升其水平。我们所面对的业务正在高速增长,涵盖多种多样的业务形态,因此我们面临着高可用性和架构设计方面的巨大挑战。我们需要保证小红书泛商业化业务持续蓬勃发展的轨道上稳定前行,因此正在寻找技术实力雄厚、架构设计经验丰富,并且与我们志同道合的伙伴。 如果你曾经参与过电商、电信、银行、财务等领域的复杂系统设计,并为这些系统提供稳定性保障,那么你就是我们正在寻找的人才。 我们期望你在以往的工作中不仅知道怎么做,还知道为什么这么做,因为我们将为你提供一个广阔的发展舞台,与志同道合的伙伴一起工作。 我们诚邀你加入我们,共同建设业内最具活力的电商平台。让我们一起创造更美好的未来! 【你将负责】 1、学习并了解小红书相关电商、广告等业务及链路,了解应用、系统、基础设施等各层技术的调用关系; 2、保障小红书电商、广告等的大促及重要活动平稳运行; 3、负责设计和落地小红书电商稳定性保障解决方案,包含但不局限于:线上问题管理、全链路的监控管理、线上变更管理、故障容灾演练管控、重大活动管理,线上问题快速恢复平台,线上问题排查平台以及稳定性文化建设,为小红书泛商业化的持续高可用负责; 4、针对小红书泛商业化场景,进行高度抽象和沉淀,通过技术手段保障研发效能持续处于业内领先水平; 5、持续对小红书泛商业化的业务架构,技术架构和基础架构进行升级,保障小红书商业化业务健康稳定快速发展和迭代。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、负责大模型平台的架构设计和核心功能研发,构建云原生架构,设计高可用、高性能的微服务体系; 2、负责构建面向大模型全流程的DevOps,与下游云原生平台深度融合,支撑大模型在公司内各业务生产链路稳定高效地落地; 3、负责万卡规模GPU集群效能分析及优化,通过调度策略优化、在离线混部、GPU虚拟化、存储&网络加速等手段,提升GPU集群使用效率; 4、将平台和框架结合,通过任务调度、弹性容灾、性能优化等措施端到端提升AI生产效率,涉及k8s/kubeflow、网络通信、分布式训练等; 5、优化各AI平台性能,提升系统稳定性和可扩展性,保障大规模并发场景下的服务质量与用户体验; 6、持续研究分析业内创新AI平台产品,优化技术方案,改进产品功能,提升创新能力与产品体验。
小红书中台AI Infra团队深耕大模型「数-训-压-推-评」技术闭环,具备专业的大模型训练加速、模型压缩、推理加速、部署提效等方向硬核技术积淀,基于RedAccel训练引擎、RedSlim压缩工具、RedServing推理部署引擎、DirectLLM大模型MaaS服务,支撑小红书社区、商业、交易、安全、数平、研效等多个核心业务实现AI技术高效落地! 大模型训练方向: 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练Pipeline; 2、研发支持多机多卡RL的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决RL算法在超长时序下的显存/通信瓶颈; 3、基于自建的训推引擎,落地公司统一的大模型生产部署平台,为公司所有大模型算法同学提供端到端的一站式服务。 大模型压缩方向: 1、探索研发针对大语言模型、多模态大模型等场景的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效; 3、参与/负责针对英伟达GPU、华为昇腾NPU等不同的计算硬件,制定不同的模型压缩方案并在业务落地。 大模型推理方向: 1、参与/负责研发面向LLM/MLLM等模型的稳定、易用、性能领先的AI推理框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,支撑各业务方向持续降本增效; 3、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 大模型服务方向: 1、参与/负责大模型MaaS系统的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现万亿级并行推理系统; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在MaaS上的使用问题。
小红书中台AI Infra团队深耕大模型「数-训-压-推-评」技术闭环,具备专业的大模型训练加速、模型压缩、推理加速、部署提效等方向硬核技术积淀,基于RedAccel训练引擎、RedSlim压缩工具、RedServing推理部署引擎、DirectLLM大模型MaaS服务,支撑小红书社区、商业、交易、安全、数平、研效等多个核心业务实现AI技术高效落地! 大模型训练方向: 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练Pipeline; 2、研发支持多机多卡RL的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决RL算法在超长时序下的显存/通信瓶颈; 3、基于自建的训推引擎,落地公司统一的大模型生产部署平台,为公司所有大模型算法同学提供端到端的一站式服务。 大模型压缩方向: 1、探索研发针对大语言模型、多模态大模型等场景的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效; 3、参与/负责针对英伟达GPU、华为昇腾NPU等不同的计算硬件,制定不同的模型压缩方案并在业务落地。 大模型推理方向: 1、参与/负责研发面向LLM/MLLM等模型的稳定、易用、性能领先的AI推理框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,支撑各业务方向持续降本增效; 3、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 大模型服务方向: 1、参与/负责大模型MaaS系统的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现万亿级并行推理系统; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在MaaS上的使用问题。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与/负责研发面向大语言模型(LLM)/多模态大模型(MLLM)等类型模型的推理服务框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,打造高效、易用、领先的AI推理框架; 2、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等; 3、与全公司各业务算法部门深度合作,为重点项目进行算法与系统的联合优化,支撑业务目标达成。