小红书【REDstar】机器学习算法工程师-中台算法
任职要求
1、本科及以上学历,计算机、软件、人工智能、电子信息、网络安全、数学等相关专业优先; 2、具备独立开展研究工作的能力, 具备算法和编程能力; 3、有搜索、推荐、广告、NLP、图像识别等相关背景优先,熟悉机器学习,NLP、数据挖掘、知识工程的经典算法,并能在业务中灵活解决实际问题,有过大规模搜索/推荐/广告系统算法研发实习经历者优先; 4、熟悉机器学习和数据挖掘领域前沿技术,在国际顶级会议(Recsys、KDD、NIPS、ICML、ACL、SIGIR)以第一作者发表过高水平论文者优先; 5、有机器学习、数据挖掘等相关项目实际经验者,或者知名数据挖掘比赛(例如KDD Cup等)中取得领先名次者优先。
工作职责
1、负责小红书搜广推多场景召回与排序模型优化,提升时长、互动、留存等核心指标; 2、核心技术方向包括:LLM应用于推荐系统,基于搜广推全域信号打通的图神经网络预训练模型,深度进化学习应用于全系统参数自动搜索,多模态在召回/排序等模块的应用等技术方向;在小红书独特的双列社区产品形态下,探索最适合社区产品的种草拔草全链路建模范式; 3、业务落地场景包括:双列推荐/展示/搜索/电商广告的模型,用户/资源冷启动,重排和多资源混排场景等。
1、参与交易个性化搜索与推荐技术的优化,通过深度学习、迁移学习、跨域表征、多任务学习等技术提升分发匹配的效率,让每个用户可以快速准确的发现好货; 2、参与小红书电商用户增长智能营销体系建设,建设智能发券系统、基础用户画像、求购行为偏好等; 3、基于LLM的用户数据理解、用户意图识别、Query纠错/改写、多模态相关性建模等; 4、基于电商交易业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的分发算法。
1、参与小红书大商业内容理解体系构建,包括电商、广告、直播和笔记多模态信息结构化算法建设和应用; 2、参与小红书商业知识图谱体系建设,以LLM为核心能力建设品牌、商品类目、属性、SPU、比价体系; 3、参与供应链上下游平台算法建设,基于小红书社区数据挖掘商机、供给源、流程趋势,并落地到B端系统工具; 4、基于交易&广告业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的内容理解算法。
社区推荐: 1、负责推荐技术的落地;实现个性化推荐,分发策略,用户理解,内容理解等方向的技术突破; 2、沉淀社区推荐技术,并探索业务的边界。能够从复杂的业务环境中抽象出清晰具体的技术问题,并将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户体验,Inspire Life; 3、与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区信息流推荐产品。 广告推荐: 1、负责广告系统核心算法研发,包括展示&搜索CTR/CVR模型、流量策略、出价策略、广告主自动化投放算法; 2、优化商家投放体验,包括冷启动、投放稳定性、新客留存等方向,不断引入更多商家预算; 3、优化广告召回、出价策略、排序模型等算法模块,增强电商广告流量匹配效率。 电商推荐: 1、参与交易个性化推荐技术的优化,通过深度学习、迁移学习、跨域表征、多任务学习等技术提升分发匹配的效率,让每个用户可以快速准确的发现好货; 2、能够从复杂的业务环境中抽象出清晰具体的技术问题,将机器学习等推荐技术有效应用于小红书App社区图文及视频推荐,提升海量用户的交易与浏览体验; 3、基于电商交易业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的推荐算法。 增长推荐: 1、负责用户增长各环节的算法策略研发,通过算法策略优化提升个性化触达、外投广告、个性化内容分发、用户画像等效果; 2、负责个性化推荐业务召回、排序等算法研发,持续优化用户拉新和拉活各个环节的算法效率; 3、负责广告投放算法工作,通过个性化预估模型和运筹优化等算法,实现对用户的精准触达和出价,提升广告投放效率; 4、负责用户消息触达等相关算法工作,通过推送等触达提升用户规模。
小红书中台AI平台团队致力于打造业界领先的一站式AI平台,通过技术创新和工程优化,为公司AI业务发展提供强有力的基础设施支撑,实现算法研发效率的显著提升和成本的有效控制。我们负责调度公司所有AI模型训练及推理的数万卡GPU资源,基于自研的训练、推理、智能体框架,为公司所有算法及工程同学提供端到端、一站式的AI研发能力,包含大模型数据处理/训练/压缩/推理/部署及开箱即用的API体验、AI知识库/智能体应用构建、搜广推数据生产/模型训练/模型上线/特征管理/模型测试等。 1、负责大模型/搜广推模型开发平台、AI应用开发平台的架构设计和核心功能研发,构建云原生架构,设计高可用、高性能的微服务体系; 2、负责构建面向大模型、搜广推、智能体全流程DevOps,与下游云原生平台深度融合,支撑大模型在公司内各业务生产链路稳定高效地落地; 3、负责万卡规模GPU集群效能分析及优化,通过调度策略优化、在离线混部、GPU虚拟化、存储&网络加速等手段,提升GPU集群使用效率; 4、将平台和框架结合,通过任务调度、弹性容灾、性能优化等措施端到端提升AI生产效率,涉及k8s/kubeflow、网络通信、分布式训练等; 5、优化各AI平台性能,提升系统稳定性和可扩展性,保障大规模并发场景下的服务质量与用户体验; 6、持续研究分析业内创新AI平台产品,优化技术方案,改进产品功能,提升创新能力与产品体验。