小红书【REDstar】机器学习算法工程师-交易算法
校招全职策略算法地点:北京 | 上海状态:招聘
任职要求
1、本科及以上学历;计算机等相关专业优先; 2、编程基本功扎实,熟悉常用的数据结构和算法,擅长Java/C++/Python中至少一门语言; 3、具备独立开展研究工作的能力,有大模型、搜索、推荐、广告、NLP、图像识别、机器学习、深度学习,数据挖掘、知识工程、大数据统计等相关背景者优先; 4、熟悉机器学习和数据挖掘领域前沿技术,在国际顶级会议(Recsys、KDD、NIPS、ICML、ACL、SIGIR)以第一作者发表过高水平论文者优先,或在知名竞赛(例如KDD Cup、Kaggle、ACM、AOI等)中取得领先名次者优先; 5、踏实勤奋,自我驱动,有良好的沟通能力和团队合作能力,有持续学习新知识的能力,有较强的逻辑思维能力,抽象、概括和总结能力。
工作职责
1、负责小红书App社区(主站)的推荐、搜索、交易、增长、直播等业务场景的技术探索,能够从复杂的业务环境中抽象出清晰具体的技术问题,并将大模型、机器学习等技术有效应用于小红书App社区建设上,与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区产品,提升亿级用户体验,Inspire Life; 2、构建小红书App社区(主站)的内容、用户之间的生产、关系、分发、消费机制,利用Query理解、多模态内容理解、相关性/召回/排序算法、深度学习、因果推断、迁移学习、跨域表征、多任务学习、图网络、运筹学、博弈机制等技术,持续建设图文&视频内容的大规模推荐/搜索/交易/知识生产等系统,通过策略和模型优化不断提升实现SOTA效果。
包括英文材料
学历+
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
ICML+
https://icml.cc/
Kaggle+
[英文] Kaggle Learn
https://www.kaggle.com/learn
Gain the skills you need to do independent data science projects.
相关职位
校招策略算法
1、负责小红书App社区(主站)的推荐、搜索、交易、增长、直播等业务场景的技术探索,能够从复杂的业务环境中抽象出清晰具体的技术问题,并将大模型、机器学习等技术有效应用于小红书App社区建设上,与各部门(包括并不限于产品,基础技术等)的同事一起深入交流合作,共同迭代和优化社区产品,提升亿级用户体验,Inspire Life; 2、构建小红书App社区(主站)的内容、用户之间的生产、关系、分发、消费机制,利用Query理解、多模态内容理解、相关性/召回/排序算法、深度学习、因果推断、迁移学习、跨域表征、多任务学习、图网络、运筹学、博弈机制等技术,持续建设图文&视频内容的大规模推荐/搜索/交易/知识生产等系统,通过策略和模型优化不断提升实现SOTA效果。
校招大模型
1、跟踪大语言模型、多模态、强化学习等算法的最前沿进展,将相应技术赋能到小红书实际的业务场景中,包括社区,商业化,交易等,持续推动AGI在业务场景下的落地应用; 2、基于成熟的AI平台服务,构建完善的AI原生应用和X+AI应用,包括如智能助理、知识问答、深度研究等,打造具有核心用户价值的热点应用; 3、探索大语言模型、多模态模型、扩散模型等在搜广推场景的落地方案。
更新于 2025-07-07
校招策略算法
1、参与交易个性化搜索与推荐技术的优化,通过深度学习、迁移学习、跨域表征、多任务学习等技术提升分发匹配的效率,让每个用户可以快速准确的发现好货; 2、参与小红书电商用户增长智能营销体系建设,建设智能发券系统、基础用户画像、求购行为偏好等; 3、基于LLM的用户数据理解、用户意图识别、Query纠错/改写、多模态相关性建模等; 4、基于电商交易业务,进行模型和算法创新,与各部门(包括并不限于产品,业务中台等)的同事一起深入交流合作,打造业界领先的分发算法。
更新于 2025-09-08