logo of xiaohongshu

小红书研究型实习生- 多模态大模型算法实习生

实习兼职大模型地点:北京状态:招聘

任职要求


【职位要求】
1. 熟练掌握深度学习机器学习计算机视觉的基础知识,熟悉常用模型的原理、特点及应用,能够结合需要解决的问题选择适当的模型,并设计合理的技术方案; 
2. 良好的科研能力,有成果发表在ICLRCVPRICCVECCVNeurIPSICML、TPAMI等国际顶级会议、期刊者优先;有Visual-Language Model和大规模语言模型(LLMs)方面经验者优先;
3. 动手实现能力强,代码基本功扎实,精通基于Python算法开发;熟练掌握pytorch/tensorflow/mxnet等至少一项深度学习框架。
5. 能够获得导师许可同时可以保证3个月以上的实习。

工作职责


【职位描述】
我们是小红书安全风控平台部/算法策略组/内容安全组,目前专注于多模态大模型在多模态理解和内容安全场景的技术落地和产品预研,目前在相关数据&技术方向有一定的积累,并将长期持续投入。我们希望寻求优秀在读硕士生/博士生共同突破大模型在安全审核行业落地的技术挑战,作为实习生,你将有机会与产品、工程紧密合作,将研究算法应用到实际问题中,并解决有难度有价值的问题,促进领域前沿技术的发展。欢迎投递简历。该岗位的核心研究方向包括但不限于:
 1. 基础多模态表征:主要研究小红书多模态数据(笔记)下的基础多模态表征工作,包括层次化表征、特征融合、自监督探索等,作为基础模型,支持多样化检索场景。
2. 通用多模态大模型:通用多模态大模型在安全领域理解相关研究,包括高效微调、多模态理解等。建立安全多模态基础模型。
包括英文材料
深度学习+
机器学习+
OpenCV+
CVPR+
ICCV+
ECCV+
NeurIPS+
ICML+
Python+
算法+
PyTorch+
TensorFlow+
相关职位

logo of aliyun
实习阿里云研究型实习

1、负责研究AI大模型的推理性能优化算法,优化大模型推理部署的算力和访存瓶颈,提升AI模型在GPU、AI加速器等硬件上部署性能效率,推动大模型普惠应用和高性价比的竞争力; 2、负责高性能软硬结合的大模型推理优化方法研究,在AI类业务场景尤其是大模型场景下,通过结合模型算法和硬件来充分挖掘软硬件协同的组合优化潜力,带来高价值的性能和成本优势; 3、负责研发业界SOTA的多模态大模型计算性能优化方法创新,增强技术壁垒,并在云的商业业务中产生核心价值。

更新于 2025-10-14
logo of amap
实习高德研究型实习生

我们正在寻找对多模态技术充满热情的算法工程师,加入我们的前沿技术研发团队。您将专注于多模态理解与生成,推动其在地图数据、信息流推荐、打车服务等场景中的落地应用,为用户提供更智能、更沉浸的服务。 主要职责 1、多模态模型研发:开发业界领先的图文多模态理解与生成模型,结合扩散模型(Diffusion Models)、Transformer架构等实现高质量场景理解和动态内容生成。 2、模型优化与性能提升:优化多模态模型的推理速度和计算效率,支持端侧部署。探索适合大模型的压缩与加速技术(包括但不限于量化、剪枝、知识蒸馏等)。 3、业务场景落地:将多模态技术应用于实际业务场景,如地图数据(道路、POI等)、信息流推荐、打车服务等。与产品、工程团队合作,推动技术从研发到上线的全流程落地。 4、前沿技术探索:持续跟踪生成式AI(Generative AI)、跨模态对齐、思维链强化学习、多模态交互、具身智能等最新技术趋势,提出创新性解决方案。

更新于 2025-07-29
logo of amap
实习高德研究型实习生

我们正在寻找对多模态技术充满热情的算法工程师,加入我们的前沿技术研发团队。您将专注于多模态理解与生成,推动其在地图数据、信息流推荐、打车服务等场景中的落地应用,为用户提供更智能、更沉浸的服务。 主要职责 1、多模态模型研发:开发业界领先的图文多模态理解与生成模型,结合扩散模型(Diffusion Models)、Transformer架构等实现高质量场景理解和动态内容生成。 2、模型优化与性能提升:优化多模态模型的推理速度和计算效率,支持端侧部署。探索适合大模型的压缩与加速技术(包括但不限于量化、剪枝、知识蒸馏等)。 3、业务场景落地:将多模态技术应用于实际业务场景,如地图数据(道路、POI等)、信息流推荐、打车服务等。 4、前沿技术探索:持续跟踪生成式AI(Generative AI)、跨模态对齐、思维链强化学习、多模态交互、具身智能等最新技术趋势,提出创新性解决方案。

更新于 2025-07-09
logo of amap
实习高德研究型实习生

业务丰富,技术领先 高德打车算法团队深度赋能打车业务全链路,涵盖 用户增长、风控、服务管控、路线与上下车点推荐、ETA 预估、智能客服 等核心场景。多样化的业务挑战为算法创新提供了广阔的发挥空间,团队已在 AI 顶级会议发表成果。 精英阵容,国际视野 团队成员来自泰晤士世界大学排名 Top 10 的高校,以及美国常青藤、清华、北大等顶尖院校,兼具国际化背景与一流技术视野。 持续成长,共享共进 团队每周固定进行技术分享,氛围开放、互助友好;除了解答算法与工程难题,资深同事还会分享项目经验,并传授业务理解与问题解决的方法论,助你快速成长。 我们正在寻找相关专业的优秀实习生,一同探索前沿大模型技术在共享出行领域的深度应用,共同攻克业界难题,优化产品体验。 在这里,你将运用大模型、强化学习、深度学习等先进技术处理海量数据,推动用户体验优化与平台效率提升,主要包括: 1. 行程问题智能处理:构建并优化模型,识别司乘纠纷、费用异常、服务质量波动、安全风险、客诉等多类行程问题,并实现自动化处理方案。 2. 前沿技术落地:将多模态大模型及相关技术(PE、SFT、DPO、RAG、AI Agent、Agentic RL、AIGC 等)应用于业务场景,显著提升算法效果与业务指标。 3. 问题建模与解决:将业务场景中的复杂问题抽象为数据建模或科学研究课题,提出可行解决方案并高质量落地。 在这里,你的算法将直接服务全国数亿级用户,带来真实而深远的影响;你能接触到前沿大模型、多模态、强化学习等核心技术,并与顶尖同事共创,在开放包容的创新氛围下,发挥AI创造力。

更新于 2025-09-25