小红书Hi Lab-【Ace顶尖实习生】探索大模型的高效训练方式和工程算法Codesign机制
实习兼职大模型地点:北京 | 上海 | 杭州状态:招聘
任职要求
1、不限年级,本科及以上在读,计算机/人工智能/软件工程等相关专业优先; 2、熟悉Linux/Unix平台上的C++编程,熟悉网络编程-多线程编程,有良好的编程习惯; 3、熟悉其中一种主流的深度学习训练或推理框架(TensorFlow / PyTorch / Onnx / TensorRT等)的原理和实现者优先; 4、有扎实的专业基础知识,熟悉常用的数据结构和算法,对计算机系统结构-网络-操作系统等专业知识有深刻认知; 5、良好的沟通协作能力,责任心强,积极主动,能和团队一起探索新技术,推进技术进步。
工作职责
本课题的研究目标是研发大规模、高效易用的大模型训练框架,针对不同模型架构,探索多机多卡分布式训练的性能极限。 包括不限于: 1、高度稀疏化、长文本的模型训练策略优化; 2、大规模MoE模型的大规模RL训练性能优化; 3、基于模型的训练和推理瓶颈,工程算法Codesign探索下一代大模型网络结构设计。
包括英文材料
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
Unix+
[英文] The UNIX® Standard
https://www.opengroup.org/membership/forums/platform/unix
https://www.youtube.com/watch?v=IrDUcdpPmdI
UNIX is an operating system which was first developed in the 1970s, and has been under constant development ever since.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
网络编程+
https://www.youtube.com/watch?v=2HrYIl6GpYg
I will make a simple HTTP web server with the C Programming Language.
https://www.youtube.com/watch?v=8z6okCgdREo
This tutorial is for Gophers who have written a command line or an API application, but have little to no experience in lower-level concepts like reading and writing to sockets, working with channels, and managing multiple goroutines.
https://www.youtube.com/watch?v=bdIiTxtMaKA&list=PL9IEJIKnBJjH_zM5LnovnoaKlXML5qh17
https://www.youtube.com/watch?v=bzja9fQWzdA
Implement the ubiquitous TCP protocol that underlies much of the traffic on the internet!
[英文] 📺Network Programming with Python Course (build a port scanner, mailing client, chat room, DDOS)
https://www.youtube.com/watch?v=FGdiSJakIS4
Learn network programming in Python by building four projects. You will learn to build a mailing client, a DDOS script, a port scanner, and a TCP Chat Room.
https://www.youtube.com/watch?v=gntyAFoZp-E
https://www.youtube.com/watch?v=JiuouCJQzSQ
Explore the fundamentals of networking in Rust by building a simple TCP server.
https://www.youtube.com/watch?v=JRTLSxGf_6w
https://www.youtube.com/watch?v=sFizpxHkIlI
In this video we'll cover SOCKET PROGRAMMING in JAVA.
https://www.youtube.com/watch?v=sXW_sNGvqcU
多线程+
https://liaoxuefeng.com/books/java/threading/basic/index.html
和单线程相比,多线程编程的特点在于:多线程经常需要读写共享数据,并且需要同步。
https://www.youtube.com/watch?v=_uQgGS_VIXM&list=PLsc-VaxfZl4do3Etp_xQ0aQBoC-x5BIgJ
https://www.youtube.com/watch?v=IEEhzQoKtQU
https://www.youtube.com/watch?v=mTGdtC9f4EU&list=PLL8woMHwr36EDxjUoCzboZjedsnhLP1j4
https://www.youtube.com/watch?v=TPVH_coGAQs&list=PLk6CEY9XxSIAeK-EAh3hB4fgNvYkYmghp
https://www.youtube.com/watch?v=xPqnoB2hjjA
This video is an introduction to multithreading in modern C++.
https://www.youtube.com/watch?v=YKBwKy5PrpQ
Rust threading is easy to implement and improves the efficiency of your applications on multi-core systems!
编程规范+
[英文] Google Style Guides
https://google.github.io/styleguide/
Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that project. It is much easier to understand a large codebase when all the code in it is in a consistent style.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
ONNX+
https://github.com/onnx/tutorials
Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
[英文] Introduction to ONNX
https://onnx.ai/onnx/intro/
This documentation describes the ONNX concepts (Open Neural Network Exchange).
相关职位
实习大模型
本课题的研究目标是研发更高效的预训练scaling效率,通过数据策略、模型结构设计(Dense, MoE, Long Context等)、初始化&优化器策略、学习范式的创新,深度理解模型的学习机制和评估方法,能够更精准的预测模型行为,并持续提升模型预训练从算力&数据到智能的转化效率。
更新于 2025-08-22
实习大模型
本课题的研究目标是: 1、研究如何充分用好文本、图片、视频等各个模态的有效信息,进行高效的多模态数据表征和联合建模,能够更加高效的从各个模态中学习有效信息; 2、探索多模数据如何才能更高效的学习,多模数据如何对文本智能能力有提升,探索理解和生成的联合建模如何进一步提高多模态模型的能力上限。
更新于 2025-08-22
实习大模型
本课题的研究目标是研发面向复杂场景的可拓展大规模强化学习系统。 包括不限于: 1、超大规模Reward System构建; 2、面向复杂场景构建“策略与反馈一体化”的递归自我增强方法,解决“AI超越人类”时的可拓展监督问题; 3、面向长程任务探索人机合作博弈的强化学习机制,实现模型在超长程复杂任务上的需求明确、自我规划与执行校验能力;让AI从被动完成指令的工具转变为主动推动任务进展的的协作者,实现目标对齐; 4、强化学习进程中的大模型可解释性、可理解性。
更新于 2025-08-22