logo of xiaohongshu

小红书【Ace顶尖实习生】基于Agent框架的AI搜索基座大模型

实习兼职策略算法地点:北京 | 杭州 | 上海状态:招聘

任职要求


1、不限年级,本科及以上在读,计算机/人工智能/软件工程等相关专业优先;
2、扎实的编程能力和算法功底,熟练掌握Python/C++/Java等至少一种编程语言;
3、扎实的机器学习/深度学习理论基础,有大规模推荐系统、计算广告、搜索引擎等核心算法项目经验;
4、在顶级学术会议或期刊发表论文,或ACM编程竞赛/机器学习等竞赛获奖;
5、良好的沟通协作能力,责任心强,积极主动,能和团队一起探索新技术,推进技术进步。

工作职责


传统的AI搜索依然基于RAG框架,少有的几个Agent框架也只涉及QueryPlanning,距离真实解决搜索中的实际问题还相距很远,例如做旅游攻略、做行业研究报告等等。我们判断,虽然当下LLM已经大范围的用于搜索领域,但是下一代的搜索技术变革一定是基于Agent的。本课题旨在研究基于Agent框架的基座模型。
包括英文材料
算法+
Python+
C+++
Java+
机器学习+
深度学习+
推荐系统+
相关职位

logo of xiaohongshu
实习机器学习平台

本课题的研究目标是针对多Agent协同场景构建基于课程学习与分层强化学习的RL框架,从优先级经验回放(PER)、分布式经验复用和Actor-Critic异步计算优化等角度,攻克多目标冲突下的样本利用率低效问题。 该技术旨在突破传统RL训练在复杂任务(如小红书社区点点RL训练任务)中收敛慢、资源消耗高的瓶颈,实现训练效率提升3倍以上,支撑Agent服务快速迭代上线需求。

logo of xiaohongshu
实习大模型

传统审核大模型通常采用SFT的方式逼近人审对审核规则的识别精度,此时人工执行质量和规则合理性则成为机审体系性能上限。 本课题通过RLVR和Multi-Agent的方式,构造机审判别Agent与规则生成Agent的博弈学习,以对抗上升的方式不断提升审核规则的完备性以及相应机审识别的准召,使得机审可以突破人工上限,实现大模型智能在审核象限的涌现和“Aha moment”。

logo of xiaohongshu
实习引擎

本课题研究如何优化向量检索技术以增强大型语言模型能力。 主要方向包括: 1、优化高维向量索引结构,实现千亿级多模态数据的高效检索; 2、设计多Agent场景下的智能检索增强生成(Agentic RAG)策略,探索检索结果与大模型上下文的最优融合方法; 3、研究基于向量检索优化大模型推理过程中的KV Cache机制,为智能体应用的效果优化和大模型推理提供关键技术支持。

logo of xiaohongshu
实习AIGC算法

目前主流的素材混剪能力主要依赖于素材的端内容理解、表征匹配、高光检测等能力帮助一键完成整个视频剪辑过程,偏模板化,且预定义较为死板,无法支持更丰富的信息量注入,以及用户自主输入剪辑要求。 本课题希望通过大语言模型的语义指令解析能力,开放基于可自定义prompt的视频编辑能力,通过指令分解、协同主题文案生成的方式,帮助完成带有故事感文案生成能力的视频剪辑功能。主要的技术难点包括: 1、多模态理解与表征:需要模型能够深入理解不同模态内容(视频片段、图像、音频)的语义和上下文; 2、时序理解与编辑:视频混剪需要理解时序信息,包括情节发展、节奏感、转场点等; 3、文案生成和改写:可自定义主题、风格的素材文案生成能力。