logo of xiaohongshu

小红书大模型推理服务(MaaS)研发工程师/专家

社招全职引擎地点:北京 | 上海状态:招聘

任职要求


任职资格:
1、优秀的代码能力、数据结构和基础算法功底,熟悉C++/Golang/Python开发;
2、有大规模分布式系统实践经验,擅长对现实问题进行建模并运用解决
3、熟悉大模型的基本原理和常见应用场景,例如 Transformer、StableDiffusion、ViT等,并…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地!

DirectLLM是小红书内部面向各业务场景建设的大模型API服务产品,通过标准化API接口提供LLM/MLLM等大模型推理服务,致力于为AI应用开发者提供品类丰富、数量众多的模型选择,并通过API接口为其提供开箱即用、能力卓越、成本经济的模型服务,各领域模型的能力均可通过统一的API和SDK来实现被不同业务系统集成。
工作职责:
1、参与/负责大模型推理服务平台(MaaS)的架构设计、系统研发、产品研发等工作;
2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现千亿级Token并行推理平台;
3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在平台上的使用问题。
包括英文材料
数据结构+
算法+
C+++
Go+
Python+
还有更多 •••
相关职位

logo of xiaohongshu
社招引擎

DirectLLM是小红书内部面向各业务场景建设的大模型API服务产品,通过标准化API接口提供LLM/MLLM等大模型推理服务,致力于为AI应用开发者提供品类丰富、数量众多的模型选择,并通过API接口为其提供开箱即用、能力卓越、成本经济的模型服务,各领域模型的能力均可通过统一的API和SDK来实现被不同业务系统集成。 工作职责: 1、参与/负责大模型推理服务平台(MaaS)的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现千亿级Token并行推理平台; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在平台上的使用问题。

北京|上海|深圳
logo of xiaohongshu
实习大模型

1、参与小红书万亿级Token量MaaS系统构建,包括但不限于大模型智能网关、大模型弹性伸缩、推理系统优化等方向,共同打造国内领先的大模型MaaS系统; 2、探索负载感知的推理系统流量调度算法,如基于Prefix Cache命中率调度、基于P/D分离的流量调度、基于KVCache使用率、推理排队负载感知的流量调度、长上下文请求调度优化等,持续提升MaaS系统的稳定性、成本效益; 3、探索并跟进业界开源SOTA模型,如Qwen系列、DeepSeek系列,多维度评估模型效果并建立相关的准入体系,及时上架到MaaS系统; 4、参与MaaS系统的国产卡适配,如华为910C、阿里PPU等; 5、参与攻克大规模分布式推理系统带来的复杂挑战,通过弹性调度、容量规划、链路压测等手段提升系统健壮性,确保平台能够弹性扩展,支撑业务的飞速增长。

更新于 2025-08-05北京|上海
logo of bytedance
校招A77447A

团队介绍:Data AML是字节跳动的机器学习中台,为抖音/今日头条/西瓜视频等业务提供推荐/广告/CV/语音/NLP的训练和推理系统。为公司内业务部门提供强大的机器学习算力,并在这些业务的问题上研究一些具有通用性和创新性的算法。同时,也通过火山引擎将一些机器学习/推荐系统的核心能力提供给外部企业客户。此外,AML还在AI for Science,科学计算等领域做一些前沿研究。 1、参与AML方舟推理千亿级TPM流量调度核心架构的开发、优化与迭代,共同打造国内领先的AI MaaS平台; 2、在公有云&云原生(Kubernetes)环境下,深入设计和实现大模型推理服务的关键子系统; 3、探索并实现智能流量路由、精细化服务治理策略,保障平台在超大规模负载下的超高可用性(99.99%+)与极致性能; 4、持续优化平台在资源调度效率、服务稳定性、成本效益等方面的表现; 5、与团队一起攻克大规模分布式系统带来的复杂挑战,确保平台能够弹性扩展,支撑业务的飞速增长。

更新于 2025-07-29上海
logo of xiaohongshu
实习大模型

1、参与小红书万亿级Token量推理系统构建,包括但不限于大模型智能网关、大模型弹性伸缩、推理系统优化等方向,共同打造国内领先的大模型推理系统; 2、探索负载感知的推理系统流量调度算法,如基于Prefix Cache命中率调度、基于P/D分离的流量调度、基于KVCache使用率、推理排队负载感知的流量调度、长上下文请求调度优化等,持续提升MaaS系统的稳定性、成本效益; 3、探索并跟进业界开源SOTA模型,如Qwen系列、DeepSeek系列,多维度评估模型效果并建立相关的准入体系,及时上架到MaaS系统; 4、参与MaaS系统的国产卡适配,如华为910C、阿里PPU等; 5、参与攻克大规模分布式推理系统带来的复杂挑战,通过弹性调度、容量规划、链路压测等手段提升系统健壮性,确保平台能够弹性扩展,支撑业务的飞速增长。

更新于 2025-08-22北京|上海