小红书国际化大模型应用算法工程师
任职要求
1、计算机/电子信息/自动控制/软件工程/数学等相关专业,硕士及以上学历; 2、扎实的大模型和机器学习理论基础,熟悉搜索 / RAG / LLM / MLLM,Agent等相关算法和系统,有大模型相关场景的业务实践经验者优先; 3、具备优秀的研究和创新能力,在ACL/EMNLP/NAACL…
工作职责
1、跟踪文本大模型、多模态大模型、强化学习等算法的最前沿进展,将相应技术赋能到多语言AI搜索对话、大模型内容理解等小红书国际化实际的业务场景中; 2、基于成熟的AI平台服务,探索构建AI搜索、对话、素材智能创作等完善的AI原生应用和X+AI应用,打造具有核心用户价值的热点应用。
1、跟踪大语言模型、多模态、强化学习等算法的最前沿进展,将相应技术赋能到机器翻译、多语言理解等小红书国际化实际的业务场景中; 2、结合业务场景,探索大语言模型、多模态模型、扩散模型等在搜广推场景的落地方案,提升海外多语言用户的搜索和推荐基础体验; 3、基于成熟的AI平台服务,构建AI搜索、素材智能创作等完善的AI原生应用和X+AI应用,打造具有核心用户价值的热点应用。
1、跟踪大语言模型、多模态、强化学习等算法的最前沿进展,将相应技术赋能到机器翻译、多语言理解等小红书国际化实际的业务场景中; 2、结合业务场景,探索大语言模型、多模态模型、扩散模型等在搜广推场景的落地方案,提升海外多语言用户的搜索和推荐基础体验; 3、基于成熟的AI平台服务,构建AI搜索、素材智能创作等完善的AI原生应用和X+AI应用,打造具有核心用户价值的热点应用。
1.参与美团全球化业务中智能客服、智能审核、智能外呼等核心场景的大模型应用研发与落地工作。 2.针对跨文化、多语言、少样本等复杂业务挑战,研究并应用强化学习、多模态学习、高效后训练等前沿技术,对大模型进行深度优化与能力增强,提升模型在实际业务中的表现。 3.主要研究方向包括但不限于: a. 任务型对话技术攻关: 研究强化学习与高效后训练方法在多模态任务型对话中的应用,优化全球用户的复杂服务请求处理与任务达成效果。 b. 少样本多模态理解与推理: 探索在海外数据稀疏环境下,通过少样本学习等手段构建强大的多模态理解与推理能力,支持高效合规审核及风险识别。 c. 可控对话生成与知识融合: 面向智能外呼等场景,研究多语言环境下可控对话生成及知识融合技术,提升沟通的自然度、准确性和业务转化率,并追踪前沿技术动态,推动创新落地。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 随着硬件算力的发展以及大模型在CV/NLP/多模态以至于AGI领域的不断突破,推荐场景下的大算力驱动能够帮助模型更全面深刻理解用户偏好,进而更好地理解用户需求,挖掘用户潜在兴趣,进而带来更好地用户体验。排序模块作为整个短视频推荐系统中非常重要的一环,承载着用户与视频之间的细粒度匹配挖掘进而挑选出用户最感兴趣的视频。如何找到合适的路径来最大化大算力下模型的记忆、泛化、推理能力,成为了研究的重中之重。 1、设计并实现最前沿的适合推荐系统的深度神经网络; 2、紧跟行业前端科研,推动优化推荐大模型训练、推理效率; 3、分析基础数据,完善基础特征,挖掘用户兴趣、内容价值,提高推荐系统的天花板; 4、端到端优化推荐大模型链路,改进短视频推荐系统,优化数十亿用户的使用体验。