小红书图像质量评价大模型算法实习生
任职要求
任职要求 1. 本科及以上学历,计算机、人工智能、统计学、自动化等相关专业; 2. 熟练掌握强化学习经典算法(如DQN、PPO、SAC等),有相关项目或竞赛经验,具备扎实的机器学习与数据挖掘基础; 3. 优秀的编码与工程实现能力,熟练掌握Python,熟悉TensorFlow/PyTorch等框架,具备大规模数…
工作职责
职位描述 1. 参与小红书视频消费链路的策略优化,基于强化学习算法构建用户长期体验最优化的决策模型; 2. 负责视频播放场景下的状态建模、奖励函数设计、策略学习与仿真评估,推动强化学习在视频消费场景的落地与迭代; 3. 深入业务数据,挖掘用户行为模式,通过AB实验、因果推断等方法科学评估策略效果,持续驱动算法与体验的双重提升.
包括但不限于 1.多模态大语言模型的研究和应用,包括但不限于应用视频理解、视频评价,针对特定任务的有监督微调和强化学习等; 2.生成内容的质量评价研究。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。