小红书模型技术-算法工程师/专家-AI技术部
任职要求
1、本科以上学历,计算机及相关专业,3年以上搜广推相关经验; 2、具有扎实的c++、python等编程功底,以及扎实的数据结构和算法功底; 3、熟悉常用机器学习在推荐系统的应用理论,包括但不限于深度学习、强化学习、迁移学习、多任务学习等算法和系统研发等; 4、熟悉tensorflow等深度学习框架,熟悉业界主流大规模机器学习工程架构,有大规模搜广推系统的排序落地经验; 5、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情,关注技术前沿进展; 6、具备良好的跨团队协作能力,善于沟通,自驱力强,责任心强。 具备以下条件者优先: 1、有优秀的工程架构能力; 2、在国际顶级会议(Recsys、KDD、NIPS、WWW、ICML、SIGIR、AAAI等)以第一作者发表过高水平论文; 3、有内容、新闻、短视频等行业的大规模推荐系统研发经验。
工作职责
【职位描述】 1、负责小红书搜广推多场景排序模型优化,提升时长、互动、留存等核心指标; 2、分析海量用户行为数据,挖掘用户兴趣,优化排序模型; 3、通过超大规模机器学习模型和系统,使用先进的排序算法优化推荐效果。
团队介绍: 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现高精度地图、三维重建、LLM/VLM,AI Agent等核心技术,持续突破自动驾驶、AR导航、具身智能、推广搜和生活服务等领域的技术边界。团队不仅在计算机视觉领域持续深耕,更将计算机视觉及AI技术在自主导航、高德打车、生活服务等多元化应用场景。 作为高德地图的核心技术驱动部门,我们以下一代三维地图引擎、多模态理解与生成、空间智能、世界模型等方向为核心,推动智能出行与真实世界连接的深度融合。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 岗位职责: 1. 跟进LLM / VLM大模型的最新技术动态,围绕Reasoning技术(如思维链、多步推理)、Long Context技术、自动化数据合成、指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术,持续推动算法创新与落地; 2. 面向垂直场景打造 LLM / VLM 应用体系,构建端到端数据链路,建立高稳定、低幻觉的模型交付框架,以极致的智能交互体验重塑用户在未来世界的生活与沟通方式。
团队介绍: 作为中国领先的数字地图内容及导航服务提供商,高德地图日均服务数亿用户出行决策,每日处理超百亿级位置数据。视觉技术中心是驱动高德实现高精度地图、三维重建、LLM/VLM,AI Agent等核心技术,持续突破自动驾驶、AR导航、具身智能、推广搜和生活服务等领域的技术边界。团队不仅在计算机视觉领域持续深耕,更将计算机视觉及AI技术在自主导航、高德打车、生活服务等多元化应用场景。 作为高德地图的核心技术驱动部门,我们以下一代三维地图引擎、多模态理解与生成、空间智能、世界模型等方向为核心,推动智能出行与真实世界连接的深度融合。 团队gihub主页:https://github.com/amap-cvlab 为何加入我们? 挑战世界级技术难题,追求智能上限 用AI驱动国民级APP的产品迭代和颠覆式创新 1、跟进AI Agent领域最新技术动态,围绕LLM大模型、Agent框架、LLM Reasoning技术(如思维链、多步推理)、优化复杂查询的Deep Research模式、长期记忆机制、自动化数据合成、指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术,持续推动算法创新与落地; 2、开展LLM Agent技术研发,构建端到端Agent系统,涵盖意图识别、知识检索、结果生成与偏好对齐,推动相关技术研究与算法落地,提升用户体验。
团队介绍: 高德地图机器学习研发部是公司AI核心技术引擎,聚焦多模态大模型、视频生成与理解、图像编辑与生成等前沿领域。团队深耕人工智能技术落地,支撑亿级用户产品,同时长期投入前沿探索,在NeurIPS/ICLR/CVPR/ACL等顶会发表多篇论文,多项成果入选“最有影响力论文”榜单。我们拥有海量数据与算力资源,鼓励创新突破,诚邀你与顶尖算法专家并肩,共同定义AI的未来!如果你渴望挑战多模态与生成式AI的技术巅峰,在视频、图像、大模型的交叉领域实现突破,欢迎加入我们!团队的github页面是:https://github.com/AMAP-ML/ 我们提供 • 参与亿级用户产品的AI核心算法研发,见证技术直接赋能业务; • 与学术大牛和工业界专家共事,持续提升技术视野; • 顶配算力资源+开放创新氛围,支持前沿探索与顶会论文发表。 具体职责包含但不限于: 1. 视觉理解任务的技术探索,要求对视觉基础任务有深入的理解,做好在商品理解、详情页的文图内容、开放图片识别等公司核心业务上的落地; 2. 多模态大模型的技术探索,要求对多模态大模型训练、文图跨模态对齐等有深入实践,做好多模态大模型的能力构建和应用; 3. 追踪领域前沿工作,沉淀技术,投稿领域顶级会议。