长鑫存储软件工程师 | Software Engineer(J16405)
任职要求
1. 专科以上学历,计算机、电子工程、通讯电子、电气工程相关专业,并从事过工业自动化行业工作; 2. 熟悉 LabView/C++/C#中的一种编程语言或者有过嵌入式软件开发经历; 3.熟悉工业通讯协议Modbus/DeviceNet/Ethercat等,至少精通其中一种通讯总线,对通讯硬件层有了解; 4.了解简单数字电路和模拟电路,熟悉示波器逻辑分析仪; 5. 3年以上相关工作经验,可以独立作业。
工作职责
1、编写脚本(Python、C#)控制机械手、传送系统(AMHS)或检测设备; 2、与硬件工程师协作,优化PLC和HMI的软件逻辑; 3、利用机器学习分析历史数据,预测设备故障或优化工艺窗口; 4、处理Linux系统及相关软硬故障; 5、与协同IT部门解决IT系统的运行过程中的软硬件平台故障。
1. 参与半导体测试相关软件或算法(如自动化测试、数据分析平台等)的需求分析、架构设计和代码开发; 2. 编写高质量、可维护的代码,完成模块开发、单元测试及系统集成测试; 3. 维护和升级现有软件系统/算法,跟踪和修复缺陷并提升性能,优化生产控制逻辑或数据处理流程等; 4. 编写技术文档,包括设计文档、接口文档及用户操作手册等; 5. 跟踪行业技术趋势(如 AI、大数据处理等),探索新技术在半导体测试中的应用。
1. 负责DRAM产品SOC和客户技术需求的收集和分析。 2. 与系统和产品开发,市场和销售部门合作,与现场团队一起进行系统解决方案的验证和部署。 3. 客户EVT/DVT/PVT技术问题分析包括故障场景理解、客户实验和CXMT内部实验。 4. 与市场和销售部门合作,了解客户的应用需求和关注点,制定计划并开发相关材料,以支持设计胜利。 1. Responsible for DRAM product SOC and customer technical requirement collection & analysis for development activities. 2. Work with system& product development, marketing and sales department for system solution validation and deployment with field team. 3. Customer EVT/DVT/PVT technical issues analysis include failure scene understanding, experiment for customer and CXMT internal experiments. 4. Work with marketing and sales to understand customer application needs and concerns, define plan and develop collaterals for supporting design win.,
Team Introduction: Data AML is ByteDance's machine learning middle platform, providing training and inference systems for recommendation, advertising, CV (computer vision), speech, and NLP (natural language processing) across businesses such as Douyin, Toutiao, and Xigua Video. AML provides powerful machine learning computing capabilities to internal business units and conducts research on general and innovative algorithms to solve key business challenges. Additionally, through Volcano Engine, it delivers core machine learning and recommendation system capabilities to external enterprise clients. Beyond business applications, AML is also engaged in cutting-edge research in areas such as AI for Science and scientific computing. Research Project Introduction: Large-scale recommendation systems are being increasingly applied to short video, text community, image and other products, and the role of modal information in recommendation systems has become more prominent. ByteDance's practice has found that modal information can serve as a generalization feature to support business scenarios such as recommendation, and the research on end-to-end ultra-large-scale multimodal recommendation systems has enormous potential. It is expected to further explore directions such as multimodal cotraining, 7B/13B large-scale parameter models, and longer sequence end-to-end based on algorithm-engineering CoDesign. Engineering research directions include: Representation of multimodal samples Construction of high-performance multimodal inference engines based on the PyTorch framework Development of high-performance multimodal training frameworks Application of heterogeneous hardware in multimodal recommendation systems 1. Algorithmic research directions include: 2. Design of reasonable recommendation-advertising and multimodal cotraining architectures 3. Sparse Mixture of Experts (Sparse MOE) 4. Memory Network 5. Hybrid precision techniques 团队介绍: Data AML是字节跳动公司的机器学习中台,为抖音/今日头条/西瓜视频等业务提供推荐/广告/CV/语音/NLP的训练和推理系统。为公司内业务部门提供强大的机器学习算力,并在这些业务的问题上研究一些具有通用性和创新性的算法。同时,也通过火山引擎将一些机器学习/推荐系统的核心能力提供给外部企业客户。此外,AML还在AI for Science,科学计算等领域做一些前沿研究。 课题介绍: 大规模推荐系统正在越来越多的应用到短视频、文本社区、图像等产品上,模态信息在推荐系统中的作用也越来越大。 字节实践中发现模态信息能够很好的作为泛化特征支持推荐等业务场景,端到端的超大规模多模态推荐系统的研究具有非常大的想象空间。 期望在算法和工程CoDesign基础上,对多模态Cotrain、7B/13B大规模参数模型、更长序列端到端等方向进一步进行探索。 工程上研究方向包括多模态样本的表征、基于 pytorch 框架的高性能多模态推理引擎、高性能多模态训练框架的构建、异构硬件在多模态推荐系统上的应用;算法上的研究方向包括设计合理的推荐广告和多模态Cotrain结构、Sparse MOE、Memory Network、混合精度等。 1、负责机器学习系统架构的设计开发,以及系统性能调优; 2、负责解决系统高并发、高可靠性、高可扩展性等技术难关; 3、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、任务编排、模型训练、模型推理、模型管理、数据集管理、工作流编排、ML for System等; 4、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、GPU优化技术的引入落地; 5、研究基于机器学习方法,实现对集群/服务资源使用情况的分析和优化。
Team Introduction: Dedicated to building an industry-leading large-model dialogue system, the team serves hundreds of millions of daily active users, with application scenarios covering the entire Douyin e-commerce ecosystem. This includes core business scenarios such as platform customer service, platform merchant service, merchant customer service, influencer customer service, and innovative intelligent shopping guides. Through continuous technological innovation and optimization, the team has successfully established a complete intelligent dialogue solution, delivering significant efficiency improvements and user experience enhancements to e-commerce operations. Research Objectives: Develop an LLM-based customer service chatbot for TikTok and Douyin E-commerce, enabling intelligent customer service interactions. The LLM will handle the entire user inquiry process, including request clarification, solution negotiation, and execution. Necessity: LLM's strong conversational and reasoning abilities make it especially suitable for intelligent customer service, capable of potentially reaching the service standards of excellent human representatives. Research Content: Design a multi-agent framework based on LLM, integrating planning-agent, reply-agent, and tool-agent. Each agent will specialize in different functions, working collaboratively to manage the complete service process—from issue identification and solution negotiation to solution implementation and feedback. 1) Reply-agent ensures the proposed solutions comply with platform policies and service guidelines, avoids excessive improvisation or hallucinations, and maintains smooth communication and negotiation with the user. 2) Planning-agent identifies user demands and problem scenarios, sourcing relevant service guidelines and constraints as well as recognizing risk scenarios. 3) Tool-agent validates the legality of tool usage, accurately interprets the results from tool interactions, and manages execution dependencies of various actions. Research Challenges: Compliance with service guidelines: Ensuring the chatbot's solutions adhere to platform service guidelines (such as available refund within xx days of parcel arrival and coupon limits per user per week). Dynamic feedback adaptation: Static adherence to service rules and providing fixed solutions can limit the flexibility of reply-agents, preventing them from acting like excellent human customer service representatives. By enabling reply-agents to interact in real-time with their environment, considering user's behavioral trends, demands expressed during inquiries, and feedback on proposed solutions, personalized service can be provided. This approach fosters adaptive responses and progressive services and solutions, closely mirroring the flexibility and excellence of human customer service. Self-reflection: Employing LLM's capabilities to understand, analyze, and evaluate its own behavior, fostering self-supervision and decision refinement through reflection on outputs, particularly with complex and ambiguous tasks. Complex image processing: Handling scenarios involving numerous complex images (including shipping order photos, bank transaction screenshots, images of damaged goods received, and seller qualification certifications). These images contain key information crucial to enhancing the chatbot's problem resolution capabilities. 团队介绍: 智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题目标: 构建基于LLM的电商客服机器人(Chatbot),服务TikTok和抖音电商智能客服场景,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段。 必要性: LLM具有强大的对话和推理能力,智能客服是LLM能够发挥价值的最典型场景,有机会能够达到匹配优秀人工客服的服务能力。 课题内容: 设计一个基于LLM 的 multi-agent framework,将 planning-agent、reply-agent、tool-agent 集成到一起,每个 agent 负责不同能力,互相协同,完成从问题定位、方案协商,到方案执行、结果反馈等服务全流程。reply agent 需要确保给用户提供的方案是符合平台的相关政策和service policy的,不自行过度发挥、不出现幻觉,顺滑的完成和用户的沟通协商过程;planning agent 完成定位用户诉求和问题场景,以便从外部获取该场景的服务准则和约束,如何识别风险场景;tool agent 需要确保工具调用的合法性、接收和解析工具调用的返回结果,另外一些动作的执行存在前后依赖的问题。 课题挑战: 1、遵循服务准则:如何确保方案Chatbot提供的方案是follow平台服务准则的,例如到货xx天之内可以申请退款、同一用户一星期内最多发送xx额度的优惠券; 2、感知环境反馈:reply agent如果只能死板的follow当前场景服务准则,提供一层不变的方案,是无法像优秀客服一样做到灵活变通的。让Agent能够实时的和环境打通,通过结合当前用户进线前的行为动线、进线后表达的诉求和用户对 agent 提供方案的反馈,为用户提供个性化的服务,对用户的实时反馈有响应,像优秀客服一样能随机应变,递进式的提供服务和解决方案; 3、进行自我反思:利用LLM理解、分析和评价其自身的行为,使LLM能够自我监督,通过对自身输出的反思,改进其所做的决策,以便在处理复杂、有歧义的任务时,能有更好的表现; 4、复杂图片理解:电商场景存在大量复杂的图片,包括运费订单实拍图、银行流水截图、买家收货缺件破损的、商家各类资质证明等,这类图片往往包含重要的信息,对提升Chatbot解决能力非常重要。