logo of cxmt

长鑫存储数据分析工程师|Data Development Engineer(J16826)

社招全职5年以上研发技术类地点:合肥状态:招聘

任职要求


学历要求:硕士及以上,211/985 院校优先
专业要求:计算机/软件/电子信息专业
其他要求:
1.5年以上相关工作经验,有半导体领域经验优先考虑
2.精通C/C++/Python/SQL,熟悉Pandas/Numpy数据分析库
3.掌握机器学习基础算法(回归/分类/聚类等)
4.具有Spark/Hadoop大数据平台开发经验
5.富有好奇探索,积极主动,追求卓越,吃苦耐劳,团队合作精神;
优先条件: 
▶ 参与过完整的数据分析项目闭环落地
▶ 具备算法优化与模型部署经验
▶ 具备探索性数据分析能力
▶ 具有利用AI训练数据,解决问题的经验

工作职责


1.基于公司海量业务数据 构建系统性分析框架
2.运用数据挖掘技术识别问题,定位异常数据模式,输出可落地的改进建议
3.开发自动化数据分析工具与可视化系统,提升数据洞察效率
4.构建预测模型与诊断模型,支持业务决策智能化转型
包括英文材料
学历+
C+
C+++
Python+
SQL+
Pandas+
NumPy+
数据分析+
机器学习+
算法+
Spark+
Hadoop+
大数据+
相关职位

logo of cxmt
社招研发技术类

1.基于Java后端技术栈与 Vue 前端框架,构建高可用、高性能的企业级应用,确保系统能稳定支撑业务的快速发展; 2.深入理解业务需求,将其转化为合理的技术方案,参与需求分析、架构设计、技术选型等关键环节,为团队提供专业的技术建议; 3.带领前端团队进行 Vue 项目的开发,打造优质的用户界面和交互体验,确保前端代码的质量与可维护性; 4.系统重构,基于软件产品原型、相关业务系统,构建企业内部业务系统,提升系统用户体验;

更新于 2025-09-12
logo of bytedance
校招A218205

Team Introduction: The ByteDance Recommendation Architecture Team is responsible for the design and development of the recommendation system architecture for ByteDance's related products. It ensures the stability and high availability of the system, optimizes the performance of online services and offline data streams, resolves system bottlenecks, and reduces cost overheads. The team also abstracts the common components and services of the system, builds the recommendation middle - office and data middle - office to support the rapid incubation of new products and enable ToB services. 团队介绍: 字节跳动推荐架构团队,负责字节跳动旗下相关产品的推荐系统架构的设计和开发,保障系统稳定和高可用;负责在线服务、离线数据流性能优化,解决系统瓶颈,降低成本开销;抽象系统通用组件和服务,建设推荐中台、数据中台,支撑新产品快速孵化以及为ToB赋能。 课题背景: 在当今数字化时代,推荐系统已成为众多领域(如电商、信息资讯等)实现个性化服务、提升用户体验和竞争力的关键技术。然而,随着技术的不断发展和业务场景的日益复杂,推荐系统面临着诸多严峻挑战。 一方面,推荐系统自身的复杂性急剧增加。大量推荐策略不断演进迭代,且系统状态动态变化,但缺乏有效手段自动跟踪评估策略有效性并下线低 ROI 策略,导致系统存在较多低效策略。同时,推荐系统依赖多种基础组件,其复杂负载模型给底层组件参数配置和性能调优带来巨大困难,日常开发迭代中的问题排查等工作消耗大量人力,亟需提升开发效率、降低人力成本。 另一方面,随着电商行业等领域的激烈竞争,传统推荐系统在多样性、创新性和个性化方面的短板愈发凸显,难以满足用户日益增长的多元需求。生成式人工智能技术虽带来新突破,但在实际应用中面临成本效率、全域数据协同、数据隐私与安全以及技术变革应对等诸多难题。 此外,随着大模型的快速发展,推荐系统对用户行为序列数据的存储和质量要求不断提高,数据质量对模型性能的影响愈发关键。同时,模型规模的扩大和多模态数据的涌现,使得推荐系统在数据处理环节面临冗长、资源利用不合理以及传统数据处理框架难以满足多模态数据处理需求等问题。 课题挑战: 策略管理与优化:构建一套智能化系统,实现推荐策略的规范化定义、长期及离线评估、无效策略自动识别与下线,以及相关代码配置的下线。 自适应调优与故障诊断:针对推荐系统多样化业务负载,利用大模型能力完成系统及底层组件的参数和配置调优,并探索自适应故障诊断方案,提供全局视角的故障追踪、定位和分析能力。 成本与效率平衡:在推荐系统应用生成式技术时,解决模型训练和运行的高成本问题,平衡成本与效率,在有限资源下实现高效推荐。 全域数据处理:应对电商等横向全域场景下海量异构数据,提升和保障数据质量与准确性,标准化供给数据给全域推荐模型,并实现低成本跨端服务,同时,确保数据隐私与安全,合规使用数据。 数据存储与质量提升:研发低成本高性能存储引擎,设计灵活的Schema Evolution机制,实现数据高并发实时写入与训推一致性,深入探究数据质量与模型预测性能的量化关系,构建基于DCAI理念的数据和模型相关性分析工具及训练数据自动化处理链路。 多模态数据与异构计算:构建适用于推荐系统的多模态数据异构计算处理框架,解决数据读取、框架整合、高性能算子编排等问题,提高数据处理和模型训练效率,建立以Python为核心的开发者生态。 推荐大算力模型效率优化:随着大模型在CV/NLP/多模态以至于AGI领域的不断突破,推荐场景下的大算力驱动能够帮助模型更全面深刻理解用户偏好,进而更好地理解用户需求,挖掘用户潜在兴趣,进而带来更好地用户体验。更大规模的推荐模型需要更大的算力,如何平衡好算力开销和效果收益,需要架构和算法工程师深度Co-Design。

更新于 2025-05-26
logo of bytedance
校招A158012A

Team Introduction: Data AML is ByteDance's machine learning middle platform, providing training and inference systems for recommendation, advertising, CV (computer vision), speech, and NLP (natural language processing) across businesses such as Douyin, Toutiao, and Xigua Video. AML provides powerful machine learning computing capabilities to internal business units and conducts research on general and innovative algorithms to solve key business challenges. Additionally, through Volcano Engine, it delivers core machine learning and recommendation system capabilities to external enterprise clients. Beyond business applications, AML is also engaged in cutting-edge research in areas such as AI for Science and scientific computing. Research Project Introduction: Large-scale recommendation systems are being increasingly applied to short video, text community, image and other products, and the role of modal information in recommendation systems has become more prominent. ByteDance's practice has found that modal information can serve as a generalization feature to support business scenarios such as recommendation, and the research on end-to-end ultra-large-scale multimodal recommendation systems has enormous potential. It is expected to further explore directions such as multimodal cotraining, 7B/13B large-scale parameter models, and longer sequence end-to-end based on algorithm-engineering CoDesign. Engineering research directions include: Representation of multimodal samples Construction of high-performance multimodal inference engines based on the PyTorch framework Development of high-performance multimodal training frameworks Application of heterogeneous hardware in multimodal recommendation systems 1. Algorithmic research directions include: 2. Design of reasonable recommendation-advertising and multimodal cotraining architectures 3. Sparse Mixture of Experts (Sparse MOE) 4. Memory Network 5. Hybrid precision techniques 团队介绍: Data AML是字节跳动公司的机器学习中台,为抖音/今日头条/西瓜视频等业务提供推荐/广告/CV/语音/NLP的训练和推理系统。为公司内业务部门提供强大的机器学习算力,并在这些业务的问题上研究一些具有通用性和创新性的算法。同时,也通过火山引擎将一些机器学习/推荐系统的核心能力提供给外部企业客户。此外,AML还在AI for Science,科学计算等领域做一些前沿研究。 课题介绍: 大规模推荐系统正在越来越多的应用到短视频、文本社区、图像等产品上,模态信息在推荐系统中的作用也越来越大。 字节实践中发现模态信息能够很好的作为泛化特征支持推荐等业务场景,端到端的超大规模多模态推荐系统的研究具有非常大的想象空间。 期望在算法和工程CoDesign基础上,对多模态Cotrain、7B/13B大规模参数模型、更长序列端到端等方向进一步进行探索。 工程上研究方向包括多模态样本的表征、基于 pytorch 框架的高性能多模态推理引擎、高性能多模态训练框架的构建、异构硬件在多模态推荐系统上的应用;算法上的研究方向包括设计合理的推荐广告和多模态Cotrain结构、Sparse MOE、Memory Network、混合精度等。 1、负责机器学习系统架构的设计开发,以及系统性能调优; 2、负责解决系统高并发、高可靠性、高可扩展性等技术难关; 3、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、任务编排、模型训练、模型推理、模型管理、数据集管理、工作流编排、ML for System等; 4、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、GPU优化技术的引入落地; 5、研究基于机器学习方法,实现对集群/服务资源使用情况的分析和优化。

更新于 2025-05-26
logo of bytedance
校招A54374

Team Introduction: TikTok is a global short-video platform available in 150 countries and regions. Our mission is to inspire creativity and bring joy by helping users discover real and interesting moments that make life better. TikTok's global headquarters are in Los Angeles and Singapore, and we also have offices in New York City, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo. TikTok Research & Development (R&D) Team: The TikTok R&D team is dedicated to building and maintaining industry-leading products that drive the success of TikTok’s global business. By joining us, you'll work on core scenarios such as user growth, social features, live streaming, e-commerce consumer side, content creation, and content consumption, helping our products scale rapidly across global markets. You'll also face deep technical challenges in areas like service architecture and infrastructure engineering, ensuring our systems operate with high quality, efficiency, and security. Meanwhile, our team also provides comprehensive technical solutions across diverse business needs, continuously optimizing product metrics and improving user experience. Here, you'll collaborate with leading experts in exploring cutting-edge technologies and pushing the boundaries of what's possible. Every line of your code will serve hundreds of millions of users. Our team is professional and goal-oriented, with an egalitarian and easy-going collaborative environment. Research Project Introduction: As the world's leading short-video platform, TikTok faces multiple challenges in its recommendation systems, including data sparsity for new users leading to insufficient personalisation, high timeliness requirements for live steaming recommendations, difficulty in maintaining user interest diversity, and complex e-commerce recommendation system chains. Traditional recommendation methods heavily rely on historical behaviour modeling, which struggles with the cold-start problem for new users. Live-streaming recommendations demand real-time responsiveness to rapidly changing content dynamics (e.g., host interactions, traffic fluctuations) within extremely short time windows (typically within 30 minutes) posing higher demands on the system's real-time perception and decision-making capabilities. Additionally, the immersive single-feed format amplifies the challenge of maintaining content diversity, requiring a careful balance between multi-interest learning and the risk of content drift caused by exploratory recommendations. The current e-commerce recommendation system follows a multi-stage funnel architecture (recall–ranking–re-ranking), which often leads to inconsistent chains, high maintenance costs, and an overreliance on short-term value prediction. This leads users to fall into content homogenization fatigue. To address these pain points, this project proposes leveraging large language models (LLMs) and large model technologies to achieve significant breakthroughs. On one hand, LLMs—with their vast knowledge base and few-shot reasoning capabilities—can infer new users' potential intentions from registration data and external knowledge, thereby alleviating cold-start issues. On the other hand, by integrating graph neural networks (GNNs) and full-lifecycle user behavior sequences for modeling social preferences, we aim to improve the accuracy of interest prediction. Additionally, the project explores the generalization capabilities, long-context awareness, and end-to-end modeling strengths of large models to simplify the e-commerce recommendation chains, enhance adaptability to real-time changes, and improve exploratory recommendation effectiveness. The ultimate goal is to build a more streamlined system with more accurate recommendations, enhancing user experience and retention while driving sustainable business growth. 团队介绍 : TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。

更新于 2025-05-26