logo of momenta

Momenta自动驾驶端到端算法实习生(决策规划)

实习兼职地点:苏州 | 上海 | 北京状态:招聘

任职要求


熟练使用C++进行开发
熟练使用python进行工具链开发
对常用决策规划算法有基本的认知
有实操经验者优先;有pybind使用经验者优先;ACM获奖优先。

工作职责


负责端到端方案变道决策规划算法的维护
负责变道决策相关的数据挖掘
负责变道功能的客户问题分析、数据回流等
负责变道决策评测算法开发。
包括英文材料
C+++
Python+
算法+
相关职位

logo of hello
实习技术

1. 协助研发基于强化学习(RL)或模仿学习(IL)的自动驾驶决策规划算法,解决复杂交通场景下的车辆行为决策与运动规划问题; 2. 参与构建和优化用于训练决策模型的数据处理流程,包括特征工程、场景提取、奖励函数设计及大规模数据集处理; 3. 负责或参与相关算法的仿真测试、实车调试、性能评估与迭代优化,推动算法在真实环境中的性能提升和落地; 4. 跟踪并调研强化学习、模仿学习、行为预测等领域的国际前沿动态与最新研究成果(如顶会论文CVPR, ICRA, NeurIPS, ICML等),并尝试将其应用于实际项目; 5. 协助端到端自动驾驶大模型或相关子模块的研发与优化工作。

更新于 2025-09-08
logo of mi
实习

1、开发基于模型的决策规划系统,解决城市、高速等场景下的交互决策、轨迹规划问题; 2、开发大规模强化学习算法与系统,完成Agent在虚拟环境中的训练以及Sim2Real的部署;

更新于 2025-05-22
logo of amap
实习高德研究型实习生

我们正在寻找对世界模型与端到端自动驾驶技术充满热情的算法实习生,加入我们的前沿技术研发团队。您将专注于端到端自动驾驶算法的研发,推动其在智能驾驶中的落地应用,为用户提供更安全、更高效的出行体验。 主要职责 1、世界模型与建图研发:开发基于多传感器融合的世界模型,实现高精度地图构建与动态场景理解。 2研究基于NeRF、3DGS等技术的三维场景表示方法,提升地图生成的效率与精度。探索语义地图构建技术,结合深度学习实现道路、车道线、交通标志等元素的自动标注与更新。 3、端到端自动驾驶算法研发:研究端到端自动驾驶算法,结合强化学习、模仿学习等技术,实现从感知到决策的全流程优化。开发基于Transformer架构的多模态融合模型,提升自动驾驶系统的鲁棒性。 4、优化端到端模型的推理速度与计算效率,支持实时决策与控制。模型优化与性能提升:针对自动驾驶场景,优化模型的推理速度和资源占用,确保高性能与低延迟。 5、探索适合大模型的压缩与加速技术(如量化、剪枝、知识蒸馏),适配车载硬件平台。 6、前沿技术探索:持续跟踪世界模型、端到端自动驾驶、具身智能等领域的最新技术趋势。提出创新性解决方案,结合业务需求推动技术突破。

更新于 2025-03-27
logo of momenta
实习软件工程

1. 设计并实现端到端智驾大模型,整合感知、规划与决策功能,提升模型的整体性能与效率; 2. 运用深度学习、强化学习、机器学习等技术,优化模型结构,提高模型对复杂驾驶场景的理解和应对能力; 3. 负责收集、标注和处理自动驾驶相关数据,构建高质量的数据集,为模型训练提供有力支持; 4. 利用数据增强、迁移学习等方法,提升数据利用效率,优化模型的泛化能力; 5. 跟踪自动驾驶和人工智能领域的最新研究成果,探索新技术在端到端大模型中的应用可能性。

更新于 2025-08-06