
零一万物大模型应用开发工程师
社招全职1年以上研发地点:北京状态:招聘
任职要求
1、本科及以上学历,计算机科学、数据工程、知识图谱相关专业优先; 2、具备RAG系统开发经验(至少1年以上RAG与LLM应用开发经验,或参与过1个RAG系统/知识图谱项目落地),熟悉RAG前沿工程领域进展和开源项目; 3、精通Python编程,精通向量数据库和图数据库的原理与调优,熟悉混合检索技术;掌握知识抽取技术,熟练使用LangChain、LlamaIndex等RAG开发框架; 4、具备Agent系统开发经验,熟悉多工具调用、任务规划与执行等Agent核心能力设计; 5、熟悉文档解析与OCR技术,有PDF、图片、表格等多种文档处理经验。 加分项 1、具备大规模数据清洗与处理经验,熟悉数据去重、噪声过滤、质量评估等数据治理流程; 2、有SFT数据处理经验,熟悉指令数据构造、数据标注质量控制、数据增强等技术; 3、了解模型微调流程,有参与过LLM领域适配或垂直场景模型优化项目经验者优先。
工作职责
1、负责AI数据工程系统的建设,包括数据采集、清洗、合成、标注等环节; 2、开发检索增强生成(RAG)系统,结合向量检索与全文检索能力,提升LLM在行业场景中的回答准确性; 3、设计并实现AI Agent系统,包括任务规划、工具调用、决策执行等核心能力,赋能业务场景的智能化应用; 4、优化检索算法,设计混合检索策略(关键词+语义+...),解决长尾查询、模糊意图匹配等挑战;参与检索增强、Tool Use、Agent等方向的研发工作; 5、完成典型RAG场景下的链路构建与部署优化,包括通过内容抽取、文本切片进行知识库构建,优化检索、重排序、生成模型的部署方式,提升推理效率。
包括英文材料
学历+
RAG+
https://www.youtube.com/watch?v=sVcwVQRHIc8
Learn how to implement RAG (Retrieval Augmented Generation) from scratch, straight from a LangChain software engineer.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
LangChain+
https://python.langchain.com/docs/tutorials/
New to LangChain or LLM app development in general? Read this material to quickly get up and running building your first applications.
https://www.freecodecamp.org/news/beginners-guide-to-langchain/
LangChain is a popular framework for creating LLM-powered apps.
LlamaIndex+
https://developers.llamaindex.ai/python/framework/getting_started/starter_example/
This tutorial will show you how to get started building agents with LlamaIndex.
https://www.ibm.com/think/tutorials/llamaindex-rag
LlamaIndex is a powerful open source framework that simplifies the process of building RAG pipelines.
开发框架+
[英文] Understanding Modern Development Frameworks: A Guide for Developers and Technical Decision-makers
https://www.freecodecamp.org/news/understanding-modern-development-frameworks-guide-for-devs/
AI agent+
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
OCR+
https://www.ibm.com/think/topics/optical-character-recognition
Optical character recognition (OCR) is a technology that uses automated data extraction to quickly convert images of text into a machine-readable format.
https://www.youtube.com/watch?v=or8AcS6y1xg
Optical character recognition (OCR) is sometimes referred to as text recognition.
数据治理+
https://www.ibm.com/think/topics/data-governance
Data governance is the data management discipline that focuses on the quality, security and availability of an organization’s data.
https://www.youtube.com/watch?v=uPsUjKLHLAg
Building data fabric eliminates the technological complexities of data governance so users can connect to the right data at the right time, regardless of where it resides.
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
相关职位
社招5年以上软件开发岗
1.负责公司LLM应用在金融领域的场景落地开发与实现; 2.设计和实现基于LLM的智能体架构,包括任务规划、对话管理、意图识别、流程工程等; 3.使用LLM开发工具框架(如Langchain、llamaIndex、AutoGen),整合智能体与大模型检索增强生成技术(RAG)的开发; 4.LLM应用部署、迭代及系统稳定性支持; 5.根据公司业务需求,与运营、产品团队紧密配合,优化和改进现有应用。
更新于 2025-06-19
社招2年以上核心本地商业-点
1. 负责研发端到端提效场景的大模型应用开发,涵盖但不限于Multi-Agent、Agentic Workflow、MCP等技术,构建和完善智能体系统的工程架构,确保系统的稳定性和扩展性。 2. 构建大模型应用相关工具平台,包括但不限于Agent实验及评测体系、Agent Tracing等能力,更高效地支持模型、工程和产品的迭代升级。 3. 跟进技术和行业动态,不断优化和提升大模型Agent的技术架构,持续提升业务场景下的Agent应用效果。
更新于 2025-03-26
社招3-5年
1.负责大模型智能体应用在物流场景的落地开发和实现; 2.设计和实现大模型智能体的架构,包括对话管理、意图识别、流程控制、服务中间件等; 3.负责大模型结合检索增强生成(RAG),多智能体等技术在业务场景中落地; 4.持续跟进大模型前沿技术、开源方案,推动适合的技术应用于生产,解决业务的实际问题; 5.对业务团队进行技术培训和指导,帮助他们更好地理解和应用 AI 技术。
更新于 2025-09-09