logo of bilibili

哔哩哔哩增长产品实习生(新户承接方向)

实习兼职产品运营类地点:上海状态:招聘

任职要求


1、较好的数据分析能力,熟练掌握sqlpython,具备因果推断、uplift等建模能力者加分;
2、具有一定的逻辑思维和产品思维;
3、大学本科及以上学历;
4、喜爱b站,熟悉b站社区文化,重度b站使用者优先。

工作职责


1、负责推荐内容质量评测工作,定期输出评测报告,牵引算法优化推荐体验;整理新用户反馈问题,提炼用户体验痛点,定期输出用户反馈报告;
2、通过用户行为数据漏斗,消费偏好等进行分析,定位关键优化节点,输出优化策略,并协同相关方推进解决;
3、具备一定产品sense,定期进行站内新户进站&使用链路体验,同时和行业其他竞品做对比,提升新户进站链路顺畅度和场景渗透。
包括英文材料
数据分析+
SQL+
Python+
因果推断+
学历+
相关职位

logo of bilibili
实习产品运营类

1、负责推荐内容质量评测工作,定期输出评测报告,牵引算法优化推荐体验;整理新用户反馈问题,提炼用户体验痛点,定期输出用户反馈报告; 2、通过用户行为数据漏斗,消费偏好等进行分析,定位关键优化节点,输出优化策略,并协同相关方推进解决。 3、具备一定产品sense,定期进行站内新户进站&使用链路体验,同时和行业其他竞品做对比,提升新户进站链路顺畅度和场景渗透;

更新于 2025-09-11
logo of bytedance
实习A81409

日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:生活服务业务依托于抖音、抖音极速版等平台,致力于促进用户与本地服务的连接。过去一年,生活服务业务开创了全新的视频种草和交易体验,让更多用户通过抖音发现线下好去处,也帮助众多本地商家拓展了新的经营阵地。 我们期待你的加入,一同为亿万用户创造更美好的生活。 1、参与自助商家成长及发展相关商家运营工作,协助负责商家动销规模的策略落地执行工作; 2、参与中小商家分型及策略任务相关的洞察执行,负责推动新店宝、任务、激励等配置落地工作; 3、参与商家产品及AI智能触达运营执行工作,负责规模化分客群、分任务、分渠道配置策略有效性; 4、密切协同商家运营相关的合作团队,以商家视角持续调研优化相关工作流,提升产品化工具提效; 5、定期收集业务流程痛点和问题,监控作业效率及产品覆盖质量的有效性,及时做好简要分析反馈。

更新于 2023-10-30
logo of bytedance
实习A73923

团队介绍:字节跳动推荐架构团队,负责字节跳动旗下相关产品的推荐系统架构的设计和开发,保障系统稳定和高可用;负责在线服务、离线数据流性能优化,解决系统瓶颈,降低成本开销;抽象系统通用组件和服务,建设推荐中台、数据中台,支撑新产品快速孵化以及为ToB赋能。 课题介绍: 1、课题背景 在人工智能技术高速发展的背景下,推荐系统作为信息过滤与个性化服务的核心,面临多重挑战: (1)数据爆炸与模型复杂化 用户行为序列数据量呈指数级增长(百亿至千亿级/日),存储需求从单用户长序列扩展至多模态数据(文本、视频、Embedding等),传统存储架构面临读写性能瓶颈与成本压力;推荐大模型对数据质量敏感度提升,数据分布异常可能导致模型效果显著下降,亟需系统性数据质量评估与改进方法。 (2)异构计算与多模态处理需求 随着生成式AI(GenAI)的普及,多模态特征处理成为刚需,传统基于CPU的大数据框架(如Spark/Hadoop)难以高效处理非结构化数据,GPU/DPU等异构计算资源利用率不足;数据处理流程与模型训练脱节,ETL环节耗时长,CPU-GPU协同效率低下,导致算法迭代周期延长。 在此背景下,以数据为中心的人工智能(DCAI)与异构计算技术成为破局关键: -DCAI 强调通过数据质量优化与自动化处理链路提升模型性能,而非单纯依赖模型改进; -异构计算 通过统一调度CPU、GPU、DPU等资源,加速多模态数据处理与模型训练,实现降本增效。 2、课题目标 (1)构建支持多模态数据的低成本高性能存储引擎:支持百亿级用户行为序列与多模态数据混合存储,实现读写延时与存储量解耦,满足PB级数据天级回溯需求; (2)设计自适应数据演化的Schema管理机制:动态兼容特征增删改,确保训推一致性,降低模型迭代中的数据迁移成本; (3)研发多模态数据异构计算框架:实现CPU-GPU-DPU协同计算,加速ETL、特征处理与模型训练,提升资源利用率30%以上; (4)建立数据质量与模型性能的量化评估体系:开发自动化工具链,通过强化学习优化数据清洗、增强与异常检测流程; (5)打造以Python为核心的开发者生态:提供灵活API与可视化工具,支持快速接入多模态数据处理与DCAI优化链路。 3、研究内容 (1)多模态存储引擎与编码优化 - 混合存储架构 - 分层设计:行为序列采用时间分区+LSM-Tree存储,多模态数据(如图像/文本)采用对象存储+元数据索引,结合CXL内存池化技术降低访问延迟; - 编码优化:针对用户行为序列设计变长Delta编码,多模态数据采用深度学习压缩模型(如VAE),压缩比提升50%以上。 -Schema动态演化 - 开发基于Protobuf的版本化Schema语言,支持特征字段热更新,兼容历史数据回溯训练。 (2)异构计算框架与资源调度 - 计算引擎整合 - 基于Ray构建统一数据湖,实现Spark/GPU算子混合编排,数据从ETL到训练Tensor化零拷贝传输; - 设计DPU加速层,将哈希计算、特征编码等操作卸载至智能网卡,释放CPU/GPU算力。 - 多模态处理优化 - 文本/视频数据采用GPU流水线预处理,利用NVIDIA RAPIDS加速特征提取; - Embedding数据通过量化感知训练(QAT) 减少显存占用,支持FP16/INT8混合精度计算。 (3)数据质量与DCAI自动化链路 - 质量评估体系 - 定义多维度指标:时空一致性(行为时序异常检测)、模态对齐度(图文匹配校验)、噪声容忍阈值(基于模型鲁棒性反推)。 - 自动化优化工具 - 开发强化学习代理,根据模型反馈自动选择数据清洗策略(如GAN-based数据增强 vs. 规则过滤); - 构建因果推理模块,定位数据分布偏移对模型AUC下降的贡献度,生成根因分析报告。 (4)开发者生态与效能提升 - Python原生接口 - 提供声明式数据处理DSL,支持通过Python装饰器定义GPU加速算子(如@gpu_map); - 集成Jupyter可视化工具,实时展示数据质量热力图与模型性能关联分析。 - 效能监控体系 - 建立资源-质量-效果三维监控看板,跟踪存储成本、数据处理吞吐量、模型AUC等核心指标。

更新于 2025-03-03
logo of bytedance
实习A59413

团队介绍:字节跳动推荐架构团队,负责字节跳动旗下相关产品的推荐系统架构的设计和开发,保障系统稳定和高可用;负责在线服务、离线数据流性能优化,解决系统瓶颈,降低成本开销;抽象系统通用组件和服务,建设推荐中台、数据中台,支撑新产品快速孵化以及为ToB赋能。 课题介绍: 1、课题背景 在人工智能技术高速发展的背景下,推荐系统作为信息过滤与个性化服务的核心,面临多重挑战: (1)数据爆炸与模型复杂化 用户行为序列数据量呈指数级增长(百亿至千亿级/日),存储需求从单用户长序列扩展至多模态数据(文本、视频、Embedding等),传统存储架构面临读写性能瓶颈与成本压力;推荐大模型对数据质量敏感度提升,数据分布异常可能导致模型效果显著下降,亟需系统性数据质量评估与改进方法。 (2)异构计算与多模态处理需求 随着生成式AI(GenAI)的普及,多模态特征处理成为刚需,传统基于CPU的大数据框架(如Spark/Hadoop)难以高效处理非结构化数据,GPU/DPU等异构计算资源利用率不足;数据处理流程与模型训练脱节,ETL环节耗时长,CPU-GPU协同效率低下,导致算法迭代周期延长。 在此背景下,以数据为中心的人工智能(DCAI)与异构计算技术成为破局关键: -DCAI 强调通过数据质量优化与自动化处理链路提升模型性能,而非单纯依赖模型改进; -异构计算 通过统一调度CPU、GPU、DPU等资源,加速多模态数据处理与模型训练,实现降本增效。 2、课题目标 (1)构建支持多模态数据的低成本高性能存储引擎:支持百亿级用户行为序列与多模态数据混合存储,实现读写延时与存储量解耦,满足PB级数据天级回溯需求; (2)设计自适应数据演化的Schema管理机制:动态兼容特征增删改,确保训推一致性,降低模型迭代中的数据迁移成本; (3)研发多模态数据异构计算框架:实现CPU-GPU-DPU协同计算,加速ETL、特征处理与模型训练,提升资源利用率30%以上; (4)建立数据质量与模型性能的量化评估体系:开发自动化工具链,通过强化学习优化数据清洗、增强与异常检测流程; (5)打造以Python为核心的开发者生态:提供灵活API与可视化工具,支持快速接入多模态数据处理与DCAI优化链路。 3、研究内容 (1)多模态存储引擎与编码优化 - 混合存储架构 - 分层设计:行为序列采用时间分区+LSM-Tree存储,多模态数据(如图像/文本)采用对象存储+元数据索引,结合CXL内存池化技术降低访问延迟; - 编码优化:针对用户行为序列设计变长Delta编码,多模态数据采用深度学习压缩模型(如VAE),压缩比提升50%以上。 -Schema动态演化 - 开发基于Protobuf的版本化Schema语言,支持特征字段热更新,兼容历史数据回溯训练。 (2)异构计算框架与资源调度 - 计算引擎整合 - 基于Ray构建统一数据湖,实现Spark/GPU算子混合编排,数据从ETL到训练Tensor化零拷贝传输; - 设计DPU加速层,将哈希计算、特征编码等操作卸载至智能网卡,释放CPU/GPU算力。 - 多模态处理优化 - 文本/视频数据采用GPU流水线预处理,利用NVIDIA RAPIDS加速特征提取; - Embedding数据通过量化感知训练(QAT) 减少显存占用,支持FP16/INT8混合精度计算。 (3)数据质量与DCAI自动化链路 - 质量评估体系 - 定义多维度指标:时空一致性(行为时序异常检测)、模态对齐度(图文匹配校验)、噪声容忍阈值(基于模型鲁棒性反推)。 - 自动化优化工具 - 开发强化学习代理,根据模型反馈自动选择数据清洗策略(如GAN-based数据增强 vs. 规则过滤); - 构建因果推理模块,定位数据分布偏移对模型AUC下降的贡献度,生成根因分析报告。 (4)开发者生态与效能提升 - Python原生接口 - 提供声明式数据处理DSL,支持通过Python装饰器定义GPU加速算子(如@gpu_map); - 集成Jupyter可视化工具,实时展示数据质量热力图与模型性能关联分析。 - 效能监控体系 - 建立资源-质量-效果三维监控看板,跟踪存储成本、数据处理吞吐量、模型AUC等核心指标。

更新于 2025-03-03