logo of futu

富途AI大模型算法工程师 (AI助手方向)

社招全职1年以上技术类地点:深圳状态:招聘

任职要求


1、本科及以上学历,计算机、人工智能、自然语言处理、金融工程等相关专业优先2、1年以上自然语言处理大模型相关算法研发经验,有金融行业或智能助手/对话系统开发经验者优先3、深入理解LLM,具备微调、提示工程、RAG等核心技术实践经验,有多智能体和多模态AI算法研发经验者优先4、具备扎实的算法基础和优秀的编程能力,熟悉 Linux 开发环境,掌握 Python/Go至少一门语言5、加分项:在金融AI顶会(如NeurIPS金融赛道、KDD金融专题)发表论文,或在互联网券商主导过核心算法项目

工作职责


1、负责智能助手产品牛牛AI的核心算法研发和优化,包括不限于知识图谱、信息抽取、语义理解、提示工程、RAG等算法技术,提升AI问答、股票分析等场景的用户体验2、探索并落地LLM微调、强化训练,以及多智能体在金融领域的创新应用,提升牛牛AI在复杂推理、多轮对话、个性化服务等方面的能力3、参与构建和优化金融领域特有的知识库、高质量标注数据集及知识图谱,提升牛牛AI对金融专业知识的理解和应用能力4、 建立并优化算法评估体系,设计严谨的线上/线下实验,持续监控模型效果,并通过数据分析和问题归因,不断迭代优化算法模型
包括英文材料
学历+
NLP+
大模型+
算法+
RAG+
智能体+
Linux+
Python+
Go+
NeurIPS+
相关职位

logo of bytedance
校招A248757

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-05-16
logo of bytedance
校招A224729

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队的算法能力目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-05-16
logo of meituan
实习核心本地商业-业

【课题说明】 面向C端用户的医药健康AI助手项目旨在重塑用户未来的看病范式,给用户提供AI问诊、对症找药、药品问答、医疗科普等多元化核心能力,在用户诊前、诊中、诊后的关键环节提供专业的医疗决策支持,从而促进线上看病一体化链路的打通,率先形成线上便捷+专业的看病入口。 【建议研究方向】 1.医药Agent技术架构设计:针对问病、问药、科普等场景分别建设专业的子Agent能力,并优化多Agent之间的协作逻辑,满足用户灵活的多轮对话交互需求。 2.模型自动化评测:从医学专业性和用户体验维度构建多维度benchmark,并探索Agent各能力项的Auto-Eval做法,提升模型评测效率和结果可靠性。 3.模型后训练技术:探索合成数据技术方案来快速积累高质量医疗训练数据,并通过SFT、强化学习等手段持续提升模型在医学问答、病情采集、疾病诊断、药品推荐等关键任务上的表现和泛化能力。

更新于 2025-05-27
logo of baidu
社招ACG

-参与Multi-Agent框架的设计与实现,包括意图识别、任务规划、记忆机制以及Code Agent等核心模块建设 -参与多模态检索的召回与排序优化,不断提升跨模态检索的准确性与用户体验 -参与文档解析、语义理解与信息抽取等方向的研究与工程落地,推动端到端效果持续优化 -持续探索跟进学术与业界前沿进展并进行落地

更新于 2025-09-11