logo of bytedance

字节跳动搜索算法工程师/专家-国际化电商

社招全职YHHP地点:上海状态:招聘

任职要求


1、本科及以上学历,计算机、电子、数学等相关专业;
2、在搜索、推荐、搜广推、计算机视觉CV、自然语言处理NLP、自然语言理解NLU、多模态、机器学习深度学习等一个或多个领域有较深入的研究者优先;
3、熟悉Linux开发环境,熟练使用C++Python语言,熟悉Html及其相关技术,熟悉网络编程者优先;
4、具有良好的问题分析解决能力,沟通协作能力,工作积极主动,能够与团队融洽合作,一起探索新技术,推进技术进步。

加分项:
1、具有优秀的基础算法、扎实的机器学习/深度学习基础,熟悉CV、NLP、RL、ML等领域的技术,在ICML、ACL、COML、EMNLP、CVPRECCVICCVNeurIPSICLR、SIGGRAPH或SIGGRAPH Asia等顶级会议/期刊上发表论文者优先;
2、具有优秀的代码能力,熟练掌握C/C++Python编程语言,ACM/ICPC、NOI/IOl、Top Coder、Kaggle等比赛获奖者优先;
3、在LLM、多模态、大模型、基础模型、世界模型、RL等领域,主导过大影响力项目者优先;
4、具有大规模搜索引擎、推荐系统分布式系统、计算广告、超大规模数据计算等相关经验者优先。

工作职责


团队介绍:字节跳动抖音搜索团队主要负责抖音搜索算法创新和架构研发工作,主要包括短视频、直播、本地生活、视觉搜索等多个业务线。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1、探索前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新。

1、参与搜索引擎研发,探索搜索全链路(分析、召回、粗排、精排、混排)的个性化行为建模,包括CTR、CVR预估、向量召回、价值混排、RAG、NLP、LLM、多模态、机器学习、深度学习等,推动搜索算法在国际化电商场景的落地与提升,提升亿级用户搜索体验;
2、参与国际化电商搜索算法的优化与迭代,提升转化效率、用户体验和供给生态;解决多语言相关性匹配、权威性感知、种草内容理解、重复铺货、山寨假货治理等技术难题,极致优化内容电商、传统货架电商等多种电商业务形态的基础搜索质量;极致提升商品、种草视频和带货直播的购物转化效率,促进GMV增长;
3、深入参与核心搜索产品的需求设计,负责算法和工程的高质量交付,持续优化效果提升产品体验;
4、挖掘数据,构建Query理解、召回、排序等模型,提升电商搜索算法能力;
5、学习前沿技术,探索大模型等创新技术在AI搜索场景的落地。
包括英文材料
学历+
OpenCV+
NLP+
机器学习+
深度学习+
Linux+
C+++
Python+
网络编程+
算法+
ICML+
CVPR+
ECCV+
ICCV+
NeurIPS+
C+
Kaggle+
大模型+
推荐系统+
分布式系统+
相关职位

logo of bytedance
社招JANJL

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、参与搜索引擎研发,探索搜索全链路(分析、召回、粗排、精排、混排)的个性化行为建模,包括CTR、CVR预估、向量召回、价值混排、RAG、NLP、LLM、多模态、机器学习、深度学习等,推动搜索算法在国际化电商场景的落地与提升,提升亿级用户搜索体验; 2、参与国际化电商搜索算法的优化与迭代,提升转化效率、用户体验和供给生态;解决多语言相关性匹配、权威性感知、种草内容理解、重复铺货、山寨假货治理等技术难题,极致优化内容电商、传统货架电商等多种电商业务形态的基础搜索质量;极致提升商品、种草视频和带货直播的购物转化效率,促进GMV增长; 3、深入参与核心搜索产品的需求设计,负责算法和工程的高质量交付,持续优化效果提升产品体验; 4、挖掘数据,构建Query理解、召回、排序等模型,提升电商搜索算法能力; 5、学习前沿技术,探索大模型等创新技术在AI搜索场景的落地。

更新于 2022-04-13
logo of bytedance
社招A67882B

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。

更新于 2025-02-25
logo of bytedance
社招A138774A

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。

更新于 2025-02-25
logo of bytedance
社招A233271

团队介绍:字节跳动搜索团队主要负责抖音、今日头条、西瓜视频等产品的搜索算法创新和架构研发工作。我们使用最前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1)探索最前沿的NLP技术:从基础的分词、NER,到应用上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2)探索跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,让视频搜索拥有更强大的检索能力;3)探索大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4)探索千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务,方方面面都进行深入研究和创新。 1、探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索LLM适性索引、LLM相关性、生成式召回、排序大模型等; 2、构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、训练和优化AI搜索的机器学习模型(多模态内容理解、指令微调、索引筛选、Query分析、Scalable Oversight、Long CoT、模型推理/规划、模型优化、构建全面客观准确的评测体系等); 3、探索推进AI搜索、AIGC创新应用的落地(包含而不限于豆包、电商、抖音、智能硬件、AI找搭配/虚拟穿搭等大模型应用场景),研发以人工智能技术为核心的新技术、新产品,探索满足用户的智能交互需求,提升现实与物理世界的交互能力。

更新于 2025-02-25