字节跳动大模型算法工程师--电商业务
任职要求
1、扎实的机器技术基础,了解前沿的AI技术,发表过高水平学术会议论文或者有竞赛经验者优先; 2、熟悉大数据相关框架和应用 MR/Spark 等优先; 3、熟悉TensorFlow/PyTorch模型的训练和部署,了解混合精度训练、分布式训练等训练加速方法优先; 4、了解模型压缩&推理加速的研究和技术进展,包括但不限于模型量化、剪枝、蒸馏、TensorRT推理优化等; 5、熟悉以下任一方向的技术: 1)CV&多模态 -在多媒体和计算机视觉某个领域有较深入的研究,包括但不限于:图像搜索、图像/视频分类和识别、图像分割、目标检测、OCR、图神经网络、多模态、无监督和自监督学习等; - 有CV/多模态大模型相关项目经验优先,研发&优化电商视频&商品多模态大模型,结合LLM和视频/商品表征,支持视频多模态分类,视频QA,跨模态检索,商品分类等任务,显著超越线上模型; -有较强的实践能力,在Kaggle,COCO,ImageNet,ActivityNet,ICPC等比赛获奖者优先; -熟悉前沿工作,有顶级学术会议(如CVPR、ICCV、ECCV等)发表论文者优先; 2)自然语言处理(NLP) -NLP方向上有较深入的研究,包括但不限于:预训练技术,自然语言理解,多语言&跨语言学习,自然语言生成,迁移学习,半监督督学习等; -有LLM大模型相关项目经验优先;研发NLP大模型,以统一电商场景的NLP任务,落地电商业务场景; -有较强的实践能力,在Kaggle,GLUE,Super GLUE,CLUE等比赛获奖者优先; -熟悉前沿工作,有顶级学术会议(如ACL、EMNLP等)发表论文者优先。
工作职责
团队介绍:Data-电商-平台治理-内容理解基础算法团队,主要 focus 在 NLP/CV/多模态的大模型算法和基础算法研发上,旨在沉淀CV/NLP/多模态方向上的业界SOTA模型,同时也需要在这几个方向持续深耕,针对电商数据优化算法,提升电商业务效果。 职位描述: 1、大模型算法研发:构建电商领域的大模型LLM底座,融合电商的知识,快速落地电商业务,例如:沉淀电商大模型预训练链路,研发电商NLP大模型,或者研发电商图文或者视频多模态大模型; 2、基础算法研发:持续建设和深耕NLP/CV/多模态基础预训练算法(BERT类算法),例如:沉淀&优化电商场景的预训练模型,包括超长文本/口语文本预训练,电商图片/视频自监督,适配电商商品的多模态表征学习等; 3、梳理&沉淀算法库,抽象算法接口,最大化提高算法/预训练模型的复用率,同时优化数据采集&模型训练&部署&推理的流程,提升研发效率; 4、技术输出:定期分享SOTA模型,赋能电商甚至公司级别的业务BU,沉淀专利和论文。
团队介绍:Data-电商-平台治理-内容理解基础算法团队,主要 focus 在 NLP/CV/多模态的大模型算法和基础算法研发上,旨在沉淀CV/NLP/多模态方向上的业界SOTA模型,同时也需要在这几个方向持续深耕,针对电商数据优化算法,提升电商业务效果。 职位描述: 1、大模型算法研发:构建电商领域的大模型LLM底座,融合电商的知识,快速落地电商业务,例如:沉淀电商大模型预训练链路,研发电商NLP大模型,或者研发电商图文或者视频多模态大模型; 2、基础算法研发:持续建设和深耕NLP/CV/多模态基础预训练算法(BERT类算法),例如:沉淀&优化电商场景的预训练模型,包括超长文本/口语文本预训练,电商图片/视频自监督,适配电商商品的多模态表征学习等; 3、梳理&沉淀算法库,抽象算法接口,最大化提高算法/预训练模型的复用率,同时优化数据采集&模型训练&部署&推理的流程,提升研发效率; 4、技术输出:定期分享SOTA模型,赋能电商甚至公司级别的业务BU,沉淀专利和论文。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍:电商推荐算法是互联网商业变现的核心驱动力,目前我们有国内最大的兴趣电商分发场景以及最大的电商广告分发场景,我们希望借鉴生成式AI的成功思路,探索在电商推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。 重点探索以下方向: 1)基于类Transformer结构的生成式推荐大模型技术,验证电商推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式; 2)研究电商推荐模态下的Tokenization以及COT相关算法优化; 3)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率; 4)语言/推荐/视频等多模态模型的结合。
团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索 LLM 和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。