字节跳动大模型算法实习生(搜索大模型)-搜索
任职要求
1、2026届本科及以上学历在读,计算机、电子、软件工程、自动化、数学等相关专业优先; 2、在搜索、推荐、搜广推、自然语言处理NLP、自然语言理解NLU、LLM、MLLM、多模态、机器学习、深度学习等一个或多个领域有较深入的研究者优先; 3、熟悉大模型预训练、Post-Training、SFT、RLHF、RL者优先; 4、熟悉Linux开发环境,熟练使用C++和Python语言; 5、具有良好的问题分析解决能力,沟通协作能力,工作积极主动,能够与团队融洽合作,一起探索新技术,推进技术进步。 加分项: 1、具有优秀的基础算法、扎实的机器学习/深度学习基础,熟悉NLP、RL、ML等领域的技术,在ICML、ACL、COML、EMNLP、CVPR、ECCV、ICCV、NeurIPS、ICLR、SIGGRAPH或SIGGRAPH Asia等顶级会议/期刊上发表论文者优先; 2、具有优秀的代码能力,熟练掌握C/C++或Python编程语言,ACM/ICPC、NOI/IOl、Top Coder、Kaggle等比赛获奖者优先; 3、在LLM、多模态、大模型、基础模型、世界模型、RL等领域,主导过大影响力项目者优先; 4、具有大规模搜索引擎、推荐系统、分布式系统、计算广告、超大规模数据计算等相关经验者优先。
工作职责
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。 主要工作方向包括: 1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新; 5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。 主要工作方向包括: 1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新; 5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。 主要工作方向包括: 1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新; 5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:TikTok搜索团队致力于为用户提供精准高效的搜索工具,创造良好的搜索体验,提升信息流动的效率,同时高价值的搜索流量也能带来商业化价值,为TikTok生态内的其他业务提供高效的入口,支持内容生态的发展,提升中尾部视频的消费力量。 你可以有机会参与核心业务功能的开发工作,接触到第一线的用户,我们期待你的加入! 1、参与TikTok业务中的基础算法相关工作,在搜索等业务运用算法能力解决业务核心问题; 2、参与LLM大语言模型的应用研究,用大模型提升搜索业务的效果和开发效率; 3、参与知识数据构建,为搜索产品提供优质的数据。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。 主要工作方向包括: 1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战; 2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力; 3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你; 4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新; 5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。