字节跳动多模态推荐算法工程师-智能创作(北京/上海)
任职要求
1、扎实的编程能力,机器学习基础知识扎实,对解决具有挑战性问题充满激情; 2、关心产品体验,逻辑感强,善于思考,数据与客观事实驱动; 3、责任心强,积极主动,有良好的沟通能力和团队合作能力; 4、参与过推荐系统、搜索等实际项目的开发,有丰富的架构设计、特征工程、画像体系建设等方面经验,熟练掌握基本的召回和排序算法,并对领域前沿算法有研究; 5、具有视觉理解、大模型算法和业务策略经验者优先。
工作职责
团队介绍:智能创作团队是字节跳动的创作场景业务中台,以AI赋能创造,致力于通过AI技术降低创作门槛,赋能视觉内容生产与创作的智能化升级。团队深度支持抖音、剪映、即梦、豆包、商业化等多个业务线,持续深耕图片与视频生成、智能剪辑、数字人、特效等多个业务场景,通过由AI驱动的智能化工具与算法,为用户提供了更智能、更便捷、更丰富的创作体验,助力普通用户轻松实现高质量内容创作,同时为专业创作者提供强大的技术支持,推动内容生态的繁荣与创新。 1、负责推荐、搜索相关算法在AI相机场景的研发和落地; 2、支持AI相机相关的业务,推动技术在抖音、剪映等业务线的落地; 3、跟踪业界前沿技术的发展,探索搜索、推荐技术在AI相机场景下的应用。
团队介绍:Data-番茄团队,负责字节跳动下番茄小说、红果短剧、番茄畅听等产品的推荐算法和AI相关工作。工作包括:搭建业界前沿的大规模推荐系统,提高产品使用体验,从小说、短剧、音频、音乐等内容方向建设完整的内容生态和AI能力,保持业务规模保持超高速增长。 课题介绍: 【课题背景】 番茄系产品作为全网最大的故事消费和创作平台,汇集了丰富的内容IP,涵盖网文、短剧、有声、漫画、动态漫等多种体裁,是大语言模型和多模态大模型天然的最佳实践场景。我们在内容创作、内容生产、内容推荐、IP改编等产品全链路上深度建设行业领先的各类AI能力,实现从供给到分发的全面能力升级,为数亿活跃用户和各类内容创作者带来全新的产品体验。 1、利用小说和短剧的长文本和多模态优势,结合大模型理解和CoT推理能力大幅度改进现有推荐系统,实现基于LLM+COT的下一代认知推理推荐引擎; 2、跨模态内容生成,探索如何将现有的IP内容在不同体裁之间进行转换和生成,实现小说、动漫、短剧等内容的AI生成和辅助创作; 3、番茄系IP价值挖掘与优化,深入挖掘IP的潜在价值,如改编、剧本创作等,优化其使用策略以及生产流程,以最大化其商业价值。
团队介绍:Data-番茄团队,负责字节跳动下番茄小说、红果短剧、番茄畅听等产品的推荐算法和AI相关工作。工作包括:搭建业界前沿的大规模推荐系统,提高产品使用体验,从小说、短剧、音频、音乐等内容方向建设完整的内容生态和AI能力,保持业务规模保持超高速增长。 课题介绍: 【课题背景】 番茄系产品作为全网最大的故事消费和创作平台,汇集了丰富的内容IP,涵盖网文、短剧、有声、漫画、动态漫等多种体裁,是大语言模型和多模态大模型天然的最佳实践场景。我们在内容创作、内容生产、内容推荐、IP改编等产品全链路上深度建设行业领先的各类AI能力,实现从供给到分发的全面能力升级,为数亿活跃用户和各类内容创作者带来全新的产品体验。 【研究方向】 1、利用小说和短剧的长文本和多模态优势,结合大模型理解和COT推理能力大幅度改进现有推荐系统,实现基于LLM+CoT的下一代认知推理推荐引擎; 2、跨模态内容生成,探索如何将现有的IP内容在不同体裁之间进行转换和生成,实现小说、动漫、短剧等内容的AI生成和辅助创作; 3、番茄系IP价值挖掘与优化,深入挖掘IP的潜在价值,如改编、剧本创作等,优化其使用策略以及生产流程,以最大化其商业价值。
团队介绍:TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。目前在北京,上海,杭州、广州、深圳分别开放多个岗位机会。 课题介绍: 多模态模型能帮助提取视频的多模态内容信息,单用户对内容的注意力是个性化的,所以基于对比学习或者生成式学习得到的内容信息无法能和推荐系统相匹配,如何将基于纯内容信号得到的多模态信息用到推荐系统里目前是一个开放的话题我们希望通过多模态模型和推荐系统联合建模的方式来个性化的提取用户-内容的联合信号,并能实现内容建模和个性化建模的双重提升。 1、探索多模态模型,包括多模态预训练,多模态LLM; 2、将多模态模型应用于图像/视频的生成创作、逻辑推理、深层语义理解、视频语义压缩、视频高光判断等; 3、探索LLM、多模态等的高效Finetuning技术和推理技术,保证模型在业务场景中的快速适配和高效调用; 4、主要研究方向包括:多模态预训练、图片和视频的生成、图片和视频风格迁移、跨模态检索、大模型多标签分类、半监督学习、自监督学习。
团队介绍:TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok研发团队,旨在实现TikTok业务的研发工作,搭建及维护业界领先的产品。加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,支持产品在全球赛道上高速发展;也能接触到包括服务架构、基础技术等方向上的技术挑战,保障业务持续高质量、高效率、且安全地为用户服务;同时还能为不同业务场景提供全面的技术解决方案,优化各项产品指标及用户体验。 在这里, 有大牛带队与大家一同不断探索前沿, 突破想象空间。 在这里,你的每一行代码都将服务亿万用户。在这里,团队专业且纯粹,合作氛围平等且轻松。目前在北京,上海,杭州、广州、深圳分别开放多个岗位机会。 课题介绍: 多模态模型能帮助提取视频的多模态内容信息,单用户对内容的注意力是个性化的,所以基于对比学习或者生成式学习得到的内容信息无法能和推荐系统相匹配,如何将基于纯内容信号得到的多模态信息用到推荐系统里目前是一个开放的话题我们希望通过多模态模型和推荐系统联合建模的方式来个性化的提取用户 - 内容的联合信号,并能实现内容建模和个性化建模的双重提升。 1、探索多模态模型,包括多模态预训练,多模态LLM; 2、将多模态模型应用于图像/视频的生成创作、逻辑推理、深层语义理解、视频语义压缩、视频高光判断等; 3、探索LLM、多模态等的高效Finetuning技术和推理技术,保证模型在业务场景中的快速适配和高效调用; 4、主要研究方向包括:多模态预训练、图片和视频的生成、图片和视频风格迁移、跨模态检索、大模型多标签分类、半监督学习、自监督学习。