logo of bytedance

字节跳动推理GPU性能优化工程师/专家-Seed

社招全职A00725A地点:北京状态:招聘

任职要求


1、本科及以上学历,计算机/电子/自动化/软件等相关专业,有AI工程优化经验的优先;
2、精通C/C++,精通算法数据结构,熟悉Python;
3、熟练GPU的高性能计算优化技术,深入理解计算机体系结构,熟悉并行计算优化、访存优化,低比特计算等;
4、具备丰富的基于CUDA的GPU性能优化经验;
5、了解深度学习算法基本原理,熟悉神经网络基本架构和各算子计算方式,了解至少一种深度学习训练框架及其模型文件的解析,如PytorchTensorflow;
6、熟悉TensorRT-LLM、ORCA、VLLM等;了解主流LLM模型,有LLM模型加速优化经验者优先。

工作职责


团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。
Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。

1、负责开发和优化字节跳动公司级的大模型推理框架;
2、主要通过GPU、CUDA性能优化的手段,结合线上实际情况,打造业界领先的高性能LLM推理引擎;
3、负责机器学习系统前瞻技术的调研和引入;
4、与算法部门深度合作,进行算法与系统的联合优化。
包括英文材料
学历+
C+
C+++
算法+
数据结构+
Python+
CUDA+
深度学习+
PyTorch+
TensorFlow+
TensorRT+
大模型+
相关职位

logo of bytedance
社招A37812

团队介绍:字节跳动豆包大模型团队(Seed)成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限,并探索新的交互。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 豆包大模型团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、以自研推理引擎为中心的在线推理服务和近离线批式推理任务框架,负责超大规模机器学习系统架构的设计开发,解决系统高并发、高可靠性、高可扩展性等技术难关,为搜索、推荐、审核等业务提供深度模型推理全场景端到端解决方案; 2、针对PyTorch、TensorFlow等框架提供高自动化、极致性能的模型优化方案,技术方案不限于子图匹配、编译优化、模型量化、异构硬件等; 3、面向全球多地域超大规模GPU算力集群,通过弹性调度、GPU超卖、任务编排等方式不断提升算力利用率; 4、与算法部门深度合作,进行算法与系统的联合优化。

更新于 2024-05-08
logo of bytedance
社招A121315

团队介绍:字节跳动豆包大模型团队(Seed)成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限,并探索新的交互。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 豆包大模型团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责机器学习系统存储相关组件的设计和开发,服务于大模型推理的各业务场景(LLM/S2S/VLM/多模态等),包括模型分发加载、KV Cache存储和优化,数据IO性能优化,提高推理TTFT、TBT等核心性能指标; 2、负责设计和实现面向大模型推理的多层级存储系统,综合利用显存、本地内存、分布式内存/磁盘、远端大容量存储系统(HDFS/对象存储)等多种介质进行数据的存储和迁移管理,实现「近计算缓存+远端大容量存储」的一体化分级系统; 3、负责优化大模型KV Cache命中率,从推理框架,流量调度,多级缓存等多个系统纬度入手定制化优化策略;优化数据的读取性能,充分利用近计算侧的NVLink、RDMA高速网络、GPU Direct技术实现数据的高效传输;优化数据副本的存放策略,实现负载流量和存储数据的合理化分布; 4、负责设计和实现高效、易用的数据访问接口,实现和推理框架、引擎的无缝对接,管理KV Cache的生命周期; 5、负责Kubernetes场景下多级存储系统的接入、管理、运维、监控,确保稳定性; 6、负责多机房、多地域、多云场景的系统搭建和容灾,优化跨集群的数据摆放。

更新于 2024-12-20
logo of bytedance
社招A98910A

团队介绍:字节跳动豆包大模型团队(Seed)成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限,并探索新的交互。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 豆包大模型团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责机器学习系统存储相关组件的设计和开发,服务于大模型推理的各业务场景(LLM/S2S/VLM/多模态等),包括模型分发加载、KV Cache存储和优化,数据IO性能优化,提高推理TTFT、TBT等核心性能指标; 2、负责设计和实现面向大模型推理的多层级存储系统,综合利用显存、本地内存、分布式内存/磁盘、远端大容量存储系统(HDFS/对象存储)等多种介质进行数据的存储和迁移管理,实现「近计算缓存+远端大容量存储」的一体化分级系统; 3、负责优化大模型KV Cache命中率,从推理框架,流量调度,多级缓存等多个系统纬度入手定制化优化策略;优化数据的读取性能,充分利用近计算侧的NVLink、RDMA高速网络、GPU Direct技术实现数据的高效传输;优化数据副本的存放策略,实现负载流量和存储数据的合理化分布; 4、负责设计和实现高效、易用的数据访问接口,实现和推理框架、引擎的无缝对接,管理KV Cache的生命周期; 5、负责Kubernetes场景下多级存储系统的接入、管理、运维、监控,确保稳定性; 6、负责多机房、多地域、多云场景的系统搭建和容灾,优化跨集群的数据摆放。

更新于 2024-12-20
logo of xiaohongshu
社招引擎

大模型具备很强的泛化及理解世界能力,在小红书内的众多生产场景遍地开花,大模型的训练和部署已成为许多算法工程师的日常。在多团队、多业务频繁使用的大规模GPU集群上,如何能够通过高效的GPU调度策略,使大家不仅能丝滑地完成训练及部署任务,同时也能充分激发大规模GPU集群的效能,是行业公认的关键挑战。在这里,你可以聚焦LLM场景,接触到超大规模GPU集群,并使用真实负载数据进行深入分析及技术探索。欢迎加入我们,一起探索领先技术改变世界! 工作职责: 1、负责万卡规模GPU集群效能分析及优化,通过调度策略优化、在离线混部、集群调度、GPU虚拟化、故障快速恢复、存储&网络加速等手段,提升大规模GPU集群的整体使用效率。 2、负责构建面向大模型训练、微调、推理、部署全流程LLMOps,与下游云原生平台深度融合,支撑大模型在公司内各业务生产链路稳定高效地落地。 3、持续关注业界最新的GPU资源调度相关技术动态,探索建设业界领先的资源调度策略及方法,构建下一代大规模AI资源调度系统。