logo of bytedance

字节跳动推荐策略算法工程师(智能内容)-Data

社招全职A231154地点:杭州状态:招聘

任职要求


1、具有扎实的算法功底和编码能力,熟悉Linux开发环境,熟练掌握C++;
2、优秀的逻辑思维能力,分析问题和解决问题的能力,对解决具有挑战性问题充满激情和韧性;
3、优秀的团队合作精神,以及良好的沟通能力;
4、有推荐系统相关经验,包括召回、排序、推荐策略等项目经验者优先;
5、熟悉HadoopSpark等大数据处理平台,有海量数据处理经验者优先;
6、熟悉常用机器学习模型/算法框架,如DNN/GBDT/LR、Tensorflow等优先。

工作职责


1、在各种APP推荐场景(包括但不局限于各种APP的信息流、视频推荐等)中,通过自研推荐系统为用户推荐今日头条、抖音、西瓜视频等内容;
2、对用户以及运营诉求进行分析和抽象,设计并实现可行的技术方案,通过推荐算法和策略优化,持续提升推荐效果;
3、分析并解决推荐中的各种问题,如冷启动、画风优化、模型校准等;
4、完善产品平台功能,尽可能做到平台化和自动化,提高接入效率,帮助扩大业务规模。
包括英文材料
算法+
Linux+
C+++
推荐系统+
Hadoop+
Spark+
机器学习+
GBDT+
TensorFlow+
相关职位

logo of bytedance
社招LUYP

1、在各种APP推荐场景(包括但不局限于各种APP的信息流、视频推荐等)中,通过自研推荐系统为用户推荐今日头条、抖音、西瓜视频等内容; 2、对用户以及运营诉求进行分析和抽象,设计并实现可行的技术方案,通过推荐算法和策略优化,持续提升推荐效果; 3、分析并解决推荐中的各种问题,如冷启动、画风优化、模型校准等; 4、完善产品平台功能,尽可能做到平台化和自动化,提高接入效率,帮助扩大业务规模。

更新于 2021-07-05
logo of bytedance
校招A212367A

团队介绍:推荐架构团队支撑字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、剪映等推荐系统架构的设计和开发,保障系统的稳定和高可用,致力于抽象系统通用组件和服务,建设推荐中台、数据中台;关于在线服务,在这里你有机会参与大规模机器学习在线预估框架的研发与优化,也有机会参与模型训练与调度等相关问题的研究与突破,解决系统瓶颈,降低成本开销;如你对大数据感兴趣,在这里也有机会参与通用实时计算系统的开发、构建统一的推荐特征中台,为推荐业务实现先进的消重、计数、特征服务等;我们期待热爱技术的你加入,一起创造更多可能。 课题介绍: 在人工智能技术高速发展的背景下,推荐系统作为信息过滤与个性化服务的核心,面临多重挑战: 一方面,推荐系统自身的复杂性急剧增加。大量推荐策略不断演进迭代、且系统状态动态变化,但缺乏有效手段自动跟踪评估策略有效性并下线低 ROI 策略,导致系统存在较多低效策略。同时,推荐系统依赖多种基础组件,其复杂负载模型给底层组件参数配置和性能调优带来巨大困难,日常开发迭代中的问题排查等工作消耗大量人力,亟需提升开发效率、降低人力成本。 另一方面,随着电商行业等领域的激烈竞争,传统推荐系统在多样性、创新性和个性化方面的短板愈发凸显,难以满足用户日益增长的多元需求。生成式人工智能技术虽带来新突破,但在实际应用中面临成本效率、全域数据协同、数据隐私与安全以及技术变革应对等诸多难题。 课题内容: 1、策略管理与优化:构建一套智能化系统,实现推荐策略的规范化定义、长期及离线评估、无效策略自动识别与下线,以及相关代码配置的下线; 2、自适应调优与故障诊断:针对推荐系统多样化业务负载,利用大模型能力完成系统及底层组件的参数和配置调优,并探索自适应故障诊断方案,提供全局视角的故障追踪、定位和分析能力; 3、成本与效率平衡:在推荐系统应用生成式技术时,解决模型训练和运行的高成本问题,平衡成本与效率,在有限资源下实现高效推荐; 4、全域数据处理:应对电商等横向全域场景下海量异构数据,提升和保障数据质量与准确性,标准化供给数据给全域推荐模型,并实现低成本跨端服务,同时,确保数据隐私与安全,合规使用数据; 5、多模态数据表征和 RAG 应用系统:应对推荐、检索、问答、创作场景的多模态数据需求,提供数据理解、预处理、索引、召回环节的完整解决方案,提供知识、记忆服务能力,并针对各类大小模型负载进行系统优化,最大化信息处理效率和精度。

更新于 2025-05-19
logo of bytedance
校招A124004A

团队介绍:推荐架构团队支撑字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、剪映等推荐系统架构的设计和开发,保障系统的稳定和高可用,致力于抽象系统通用组件和服务,建设推荐中台、数据中台;关于在线服务,在这里你有机会参与大规模机器学习在线预估框架的研发与优化,也有机会参与模型训练与调度等相关问题的研究与突破,解决系统瓶颈,降低成本开销;如你对大数据感兴趣,在这里也有机会参与通用实时计算系统的开发、构建统一的推荐特征中台,为推荐业务实现先进的消重、计数、特征服务等;我们期待热爱技术的你加入,一起创造更多可能。 课题介绍: 在人工智能技术高速发展的背景下,推荐系统作为信息过滤与个性化服务的核心,面临多重挑战: 一方面,推荐系统自身的复杂性急剧增加。大量推荐策略不断演进迭代、且系统状态动态变化,但缺乏有效手段自动跟踪评估策略有效性并下线低 ROI 策略,导致系统存在较多低效策略。同时,推荐系统依赖多种基础组件,其复杂负载模型给底层组件参数配置和性能调优带来巨大困难,日常开发迭代中的问题排查等工作消耗大量人力,亟需提升开发效率、降低人力成本。 另一方面,随着电商行业等领域的激烈竞争,传统推荐系统在多样性、创新性和个性化方面的短板愈发凸显,难以满足用户日益增长的多元需求。生成式人工智能技术虽带来新突破,但在实际应用中面临成本效率、全域数据协同、数据隐私与安全以及技术变革应对等诸多难题。 课题内容: 1、策略管理与优化:构建一套智能化系统,实现推荐策略的规范化定义、长期及离线评估、无效策略自动识别与下线,以及相关代码配置的下线; 2、自适应调优与故障诊断:针对推荐系统多样化业务负载,利用大模型能力完成系统及底层组件的参数和配置调优,并探索自适应故障诊断方案,提供全局视角的故障追踪、定位和分析能力; 3、成本与效率平衡:在推荐系统应用生成式技术时,解决模型训练和运行的高成本问题,平衡成本与效率,在有限资源下实现高效推荐; 4、全域数据处理:应对电商等横向全域场景下海量异构数据,提升和保障数据质量与准确性,标准化供给数据给全域推荐模型,并实现低成本跨端服务,同时,确保数据隐私与安全,合规使用数据; 5、多模态数据表征和 RAG 应用系统:应对推荐、检索、问答、创作场景的多模态数据需求,提供数据理解、预处理、索引、召回环节的完整解决方案,提供知识、记忆服务能力,并针对各类大小模型负载进行系统优化,最大化信息处理效率和精度。

更新于 2025-05-19
logo of bytedance
校招A27826

团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责抖音APP产品的推荐算法工作,共同搭建行业顶尖的推荐系统,为用户提供一流的产品体验; 2、深入理解各场景业务和机器学习技术,优化模型、策略,持续提升推荐效果;将最前沿的机器学习技术应用到抖音的场景业务,优化用户体验促进业务发展; 3、研究方向包含但不局限于:深度学习、图神经网络、生成式推荐、多目标融合和流量分发机制设计、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进抖音生态的长期繁荣发展。

更新于 2025-07-30