字节跳动多模态大模型算法研究实习生(多媒体方向)-视频架构
任职要求
1、2025届本科及以上学历在读,机器学习、计算机科学和数学等相关专业优先; 2、熟悉Diffusion、LLM等大模型相关算法和技术,熟悉大模型训练与调优,并且有实际应用的经验; 3、熟悉计算机视觉(CV)相关的算法和技术,熟悉GAN、VAE、Diffusion等视觉AIGC算法; 4、有自然语言处理(NLP)和强化学习(RL)算法经验者优先,熟悉Transformer、BERT、GPT等常用模型结构; 5、在大模型领域,有主导过具有重要影响力的项目或发表过顶级相关论文(NerulPS、ICLR、ICML等)优先。
工作职责
ByteIntern:面向2025届毕业生(2024年9月-2025年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:视频架构是字节跳动的视频中台部门,支持字节跳动旗下产品的点播、直播、实时通信、图片、多媒体业务发展,目标成为业界多媒体解决方案领先者,构建极致的视频技术/产品服务体验。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。
团队介绍:广告业务原为商业产品与技术部门,为抖音集团的商业变现提供广告产品与技术,负责端到端大型广告系统建设,覆盖抖音、今日头条、西瓜视频、番茄小说、穿山甲等产品矩阵,践行"激发生意新可能"理念,致力于让营销更省心、更高效、更美好,推动商业的可持续增长,让不分体量、地域的企业及个体,都能通过数字化技术激发创造、驱动生意。连接广告主、用户及生态伙伴、成为开放共赢的全球最佳智能营销平台之一。在这里,你将投身建设面向未来的数字营销能力,接触到全球先进的商业产品架构、模型和算法,在互联网广告行业始终创新。 课题介绍: 1、核心技术架构: 1)下一代广告技术栈: 模型算法层:搭建基于强化学习的智能出价与流量预估系统,攻克深层转化场景下的数据稀疏、多源异构数据融合(延迟数据/埋点噪声/跨平台行为)等行业难题; 系统工程层:构建支持基于长序列特征的实时预估框架,研发支持动态创意组合的自动化投放引擎; AIGC融合层:建立文/图/视频多模态生成技术中台,实现从IP素材生成到智能投放的全链路闭环; 2)行业首创的AIGC解决方案: 正在搭建全球领先的"小说→漫剧"智能生产线,攻克三大技术堡垒: 多模态叙事引擎:研发支持角色一致性保持(Character-aware Diffusion)、分镜自动生成(Storyboard LLM)、动态运镜控制(Camera ControlNet)的复合型生成框架; 工业化工作流:构建支持分布式渲染、多版本AB测试、合规性审核的智能生产管线,实现日均千级素材产能; 投放增效系统:开发生成质量量化评估模型(QAGAN),建立素材生成-投放效果的反哺优化机制; 2、岗位挑战: 你将主导: 构建支持沿模型的混合推理框架,优化多卡并行下的生成效率; 设计跨模态对齐算法,提升文字指令到视觉元素的可控生成精度; 研发基于用户行为分析的智能素材变异系统,实现CTR提升30%+的个性化内容生成; 打造从内容生产到实时竞价的全自动化广告引擎; 3、我们期待这样的开拓者: 精通Diffusion Models技术栈,具有LoRA/ControlNet/T2I-Adapter等微调框架的实战调优经验; 熟悉多模态大模型(如VideoPoet、Sora等视频生成技术原理),具备跨模态表征学习研究背景; 拥有广告算法背景者优先,熟悉CVR预估、智能出价等核心模块与生成式AI的结合点; 出色的工程化能力,主导过至少一个完整AIGC项目的端到端落地(从模型训练到服务部署)。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。
团队介绍:视频与边缘部门承载了字节跳动的媒体内容分发基建及技术中台,支持了字节全系产品的点播、直播、实时通信、图片等多媒体业务发展,同时将业务发展过程中沉淀下来的技术能力和工具,通过火山引擎对外输出,面向各行各业用户提供视频云产品和服务,愿景是为内外部业务伙伴提供最低成本、最优画质、最低延时、最安全可靠的富媒体内容分发解决方案,助力业务伙伴降本提效实现持续增长。 课题介绍:随着4K、HDR等技术成为主流标准,消费者对视频画质的要求日益提升。然而,视频在拍摄、传输和压缩过程中,画质往往受损,影响观看体验。多模态大模型的出现为视频分析、理解、画质评估、及画质增强提供了新的可能性,因此希望能够探索多模态大模型在多媒体场景的应用可行性,发掘基座大模型在大规模业务视频内容应用的潜力,建立业内领先的多媒体场景的多模态大模型解决方案。 画质分析以及人眼感知:利用多模态大模型,深入分析视频内容及画质退化问题,研究人眼对色彩、帧率、清晰度等画质维度的感知能力,从而使得画质评估更为准确,画质增强对退化的处理更为智能,增强的结果更符合人眼主观。生成式画质增强:利用生成式大模型的先验信息,大幅提升画质增强的效果天花板,并且解决生成伪像、生成保真度、生成稳定性等当前生成式算法存在的问题。视频时域任务:研究画质理解和增强在视频上的拓展,包括时域信息表征建模,时域退化理解,时域画质增强连续性,时域推理加速等。用户视角的验证:在大规模用户环境中,从用户的实际观看体验出发,验证画质增强算法的有效性和用户满意度。 1、支持研发基于大模型的多媒体算法,包括但是不限于视频理解,质量评价、视频处理和增强以及视频压缩; 2、支持多模态大模型相关算法的性能优化以及加速; 3、支持多模态大模型的算法在多媒体业务中落地,在图文、点播、直播等业务中发掘应用场景; 4、支持多模态大模型相关的前沿学术研究,在国际顶级会议与期刊中发表成果。