logo of bytedance

字节跳动大语言模型算法研究员(推理/规划/Agent方向)-Seed

社招全职A135657地点:北京状态:招聘

任职要求


1、有相关方向研究背景的候选人优先;
2、优秀的代码能力、数据结构和基础算法功底,熟练C/C++Python,ACM/ICPC、NOI/IOI、Top Coder、Kaggle等比赛获奖者优先;
3、在大模型领域,主导过大影响力的项目或论文者优先;
4、出色的问题分析和解决能力,能深入解决大模型训练和应用存在的问题;
5、良好的沟通协作能力,能和团队一起探索新技术,推进技术进步。

工作职责


团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。
Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。

1、负责提升大模型的“智商”,全链路(包含评估,Pretrain,SFT,RLHF等)提升大模型的逻辑推理、任务规划等能力;
2、研究数据合成、Scalable oversight,突破数据瓶颈,减轻对人类标注的依赖;
3、研究System 2在推理、规划能力中的应用,用“慢思考”提升效果,优化模型基础能力;
4、探索如何构建稳健的评估方法,全面、客观、公正地评估模型的基础推理规划能力,以及和复杂环境的交互能力;
5、提升模型的工具调用、API交互能力,通过构建Agent、Multi-agent解决复杂问题。
包括英文材料
数据结构+
算法+
C+
C+++
Python+
Kaggle+
大模型+
相关职位

logo of bytedance
社招A47291

团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责提升大模型的“智商”,全链路(包含评估,Pretrain,SFT,RLHF等)提升大模型的逻辑推理、任务规划等能力; 2、研究数据合成、Scalable oversight,突破数据瓶颈,减轻对人类标注的依赖; 3、研究System 2在推理、规划能力中的应用,用“慢思考”提升效果,优化模型基础能力; 4、探索如何构建稳健的评估方法,全面、客观、公正地评估模型的基础推理规划能力,以及和复杂环境的交互能力; 5、提升模型的工具调用、API交互能力,通过构建Agent、Multi-agent解决复杂问题。

更新于 2024-06-24
logo of meituan
校招核心本地商业-基

通用Agent方向: 1.探索模型通过 RL Scaling 等方式使用成套工具解决复杂问题的行动和规划能力,包括 Human in the Loop 多轮交互下 Agent 基础建模的新方案、以及与复杂环境的交互学习能力; 2.探索模型在 Non-Rule Based Outcome 场景下利用复杂信息进行有效推理的范式,包括 Proactive Agent 的建模方案; 3.探索研究更多内在奖励的机制,从而激发模型主动学习和自我更新的能力; 4.探索构建长期记忆机制,为下一代高效的推理模型、长序列推理及建模提供基础。 搜索Agent方向: 1.参与通用AI搜索中Agent的框架建设和算法优化,并能在实际业务场景进行落地; 2.探索指令微调、偏好对齐(RLHF/DPO)和LLM Reasoning(如思维链、多步推理)在AI搜索场景的应用,特别是提升复杂搜索能力(如Deep Research); 3.构建端到端Agent优化系统,将意图识别、推理规划、工具调用、信息检索和结果生成等步骤联合优化,探索大模型AI搜索Agent的智能上限; 4.研究AI搜索Agent的自动评测标准和方法,构建公平、合理并且全面的评测系统加速Agent迭代; 5.跟踪大模型和搜索最前沿的技术,包括但不限于多模态、Scaling Law、训练范式探索、长文本优化、高效训推框架探索。 安全方向: 1.负责LLM、VLM通用大模型与垂类大模型的内容安全研发,提升模型识别风险、规避风险、处置风险的能力。 2.负责通过定性、定量方法评估策略表现,进行策略迭代更新,不断提升内容安全效果。 3.深度参与大模型、安全、算法等领域的调研,结合通用模型的新技术、新场景,如LongCoT、Agent、GUI,积极探索相应新技术、新场景上,安全方案的创新和落地。

更新于 2025-05-23
logo of meituan
校招核心本地商业-基

视觉方向 1.探索大规模/超大规模多模态视觉大模型,并进行极致系统优化,数据建设、指令微调、偏好对齐、模型优化。 2.探索统一的多模态大模型架构,打通理解与生成之间的壁垒,研究如何在单一模型框架下实现对多模态信息的深度理解与高质量生成。 3.探索多模态推理模型(Reasoning)架构、提升多模态在学科、通用视觉任务上的思考和推理能力。 4.探索视觉GUI Agent模型构建,提升GUI场景下的理解、规划和决策能力,进而提升人机交互的性能。 5.探索具身智能大模型的构建,提升机器人在物理场景中的模仿学习和强化学习算法,提升具身智能的多模态处理能力以及与开放世界的物理交互能力。 6.探索多模态视觉大模型后训练方法,探索指令微调、强化学习等后训练策略,提升模型的性能。 语音方向 1.语音表征学习:探索同时适用于理解和生成任务、兼顾学习效率和效果的语音表征。 2.模型结构与预训练方法:研究可大规模扩展的模型结构,高效学习语音和文本知识,提升模型的理解和生成能力。 3.音频理解:在语音(Speech)之外,探索更广泛的音频(Audio,如音乐、环境声)理解能力。 4.音频生成:探索高质量音频生成能力,具备强表现力、多风格、多语种、多音色等。 5.后训练方法:探索基于 SFT 和 RL 的后训练策略,进一步提升模型能力上限,。 6.智能交互技术研究,探索高效的智能交互技术,增强系统交互过程中的智能能力、拟人度、自然度和主动性。 全模态融合 大语言模型最近取得的突破,加速了多模态大模型的发展。全模态大模型(Omni-MLLM)通过融入如视觉、语音等模态,拓展了多模态大语言模型的能力,有助于更全面、多维度地理解与生成各种模态,提供更强的智能以及更智能的交互模式。 1.多模态表征对齐:研究在统一模型架构下提取并共享视觉、语音、语言等模态的特征;基于对比学习、自监督学习,优化多模态对齐过程;针对视频、音频等数据,研究时间序列信息的对齐技巧。 2.多模态统一模型架构:探索统一全模态大模型架构,研究高效全模态预训练技术,使之能够高效处理文本、图像、视频和语音数据,并生成涵盖文本、音频和图像等多种模态的输出 3.多模态知识迁移与能力增强:研究在不同模态间的能力迁移,激发模型在跨模态任务中的涌现能力。

更新于 2025-05-23
logo of sensetime
校招算法研究

1. 负责实现和迭代自然语言处理相关算法,支撑企业数字化业务中的自然语言理解和生成需求,例如信息抽取、文档分析、检索问答、对话交互等; 2. 与工程团队协作,将算法集成到产品中,支撑金融业务场景的迭代优化; 3. 负责某一细分领域的深入算法研究,包括但不限于基础模型开发、对齐研究、推理优化、SFT训练及Agent智能体开发; 4. 设计和开发基于大语言模型(LLM)的智能Agent,优化其在金融场景中的任务规划、工具调用及自主决策能力; 5. 维护相关研究和业务方向的基准(代码、数据、Prompt/Instruction等),将创新算法沉淀为论文、技术报告或专利。

更新于 2025-08-21