字节跳动后端研发工程师-商业化交易中台
任职要求
1、本科及以上学历,计算机、软件工程等相关专业,基础知识扎实; 2、熟悉面向对象设计和开发,对代码有高度追求,熟悉Java/Go/C++/Python中的至少一门编程语言; 3、熟悉分布式系统的挑战和解决方案,掌握常见中间件的使用以及原理; 4、学习能力强,有良好的自驱力,具备独立解决问题的能力; 5、责任心强,具备良好的沟通协作和项目推动能力。
工作职责
1、负责字节跳动商业变现交易中台的后端开发,构建客户全流程交易管理(签约、交易结算、资金、计费、资金风控),支撑集团千亿规模的营收目标,确保商业变现过程高效、合规; 2、负责高质量的方案设计和代码实现,承担高优的重难点技术攻坚; 3、持续改善服务稳定性和性能等技术问题,提升用户体验; 4、参与产品需求讨论、技术规划与落地,与产品经理高效协同,按期按质交付。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练 Pipline; 2、研发支持多机多卡 RL 的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决 RL 算法在超长时序下的显存/通信瓶刭 3、构建端到端后训练工具链,主导框架与 MLOps 平台集成,提供训练可视化、自动超参搜索等生产级能力 4、与公司各算法部门深度合作,参与大语言模型LLM、多模态大模型 MLLM等业务在 SFT/RL领域的算法探索和引擎迭代; 5、参与分析各业务 GPU 利用率与饱和度等指标,结合业务场景持续优化训练框架能力,提升框架领先性。
小红书中台AI Infra团队深耕大模型「数-训-压-推-评」技术闭环,具备专业的大模型训练加速、模型压缩、推理加速、部署提效等方向硬核技术积淀,基于RedAccel训练引擎、RedSlim压缩工具、RedServing推理部署引擎、DirectLLM大模型MaaS服务,支撑小红书社区、商业、交易、安全、数平、研效等多个核心业务实现AI技术高效落地! 大模型训练方向: 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练Pipeline; 2、研发支持多机多卡RL的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决RL算法在超长时序下的显存/通信瓶颈; 3、基于自建的训推引擎,落地公司统一的大模型生产部署平台,为公司所有大模型算法同学提供端到端的一站式服务。 大模型压缩方向: 1、探索研发针对大语言模型、多模态大模型等场景的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效; 3、参与/负责针对英伟达GPU、华为昇腾NPU等不同的计算硬件,制定不同的模型压缩方案并在业务落地。 大模型推理方向: 1、参与/负责研发面向LLM/MLLM等模型的稳定、易用、性能领先的AI推理框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,支撑各业务方向持续降本增效; 3、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 大模型服务方向: 1、参与/负责大模型MaaS系统的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现万亿级并行推理系统; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在MaaS上的使用问题。
小红书中台AI Infra团队深耕大模型「数-训-压-推-评」技术闭环,具备专业的大模型训练加速、模型压缩、推理加速、部署提效等方向硬核技术积淀,基于RedAccel训练引擎、RedSlim压缩工具、RedServing推理部署引擎、DirectLLM大模型MaaS服务,支撑小红书社区、商业、交易、安全、数平、研效等多个核心业务实现AI技术高效落地! 大模型训练方向: 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练Pipeline; 2、研发支持多机多卡RL的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决RL算法在超长时序下的显存/通信瓶颈; 3、基于自建的训推引擎,落地公司统一的大模型生产部署平台,为公司所有大模型算法同学提供端到端的一站式服务。 大模型压缩方向: 1、探索研发针对大语言模型、多模态大模型等场景的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效; 3、参与/负责针对英伟达GPU、华为昇腾NPU等不同的计算硬件,制定不同的模型压缩方案并在业务落地。 大模型推理方向: 1、参与/负责研发面向LLM/MLLM等模型的稳定、易用、性能领先的AI推理框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,支撑各业务方向持续降本增效; 3、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 大模型服务方向: 1、参与/负责大模型MaaS系统的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现万亿级并行推理系统; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在MaaS上的使用问题。