字节跳动算法实习生-国际商业化产品与技术
任职要求
1、2026届本科及以上学历在读,机器学习和模式识别相关专业; 2、数据结构和算法基础扎实,熟悉Python、C++、Golang语言; 3、了解机器学习或深度学习各领域,如:RecSys、NLP、CV、GE,有推荐系统、大模型训练及多模态算法项目经验者优先; 4、对新技术充满热情,具备优秀的问题分析和解决能力; 5、良好的团队合作精神和沟通技巧; 6、强烈的毅力和勇气,助力业务提升到更高水平。
工作职责
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、运用算法全面理解广告商、内容创作者和创意内容,开发先进的内容理解、搜索、推荐算法; 2、在千亿级商业流量上进行在线建模,优化推荐系统和广告系统中创意内容的分发策略; 3、为自然流量和广告流量开发科学的分配策略,旨在提升广告商和内容创作者的长短期价值。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、利用机器学习技术,改进国际短视频业务的推荐、广告系统,优化数亿用户的阅读体验; 2、分析基础数据,挖掘用户兴趣、文章价值,增强推荐、广告系统的预测能力; 3、分析用户商业意图,挖掘流量潜在商业价值,提升流量变现; 4、研究计算机视觉算法,给用户提供更多更酷炫的功能; 5、研发机器翻译与对话技术,促进跨语言内容理解与交流。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、利用机器学习技术,改进国际短视频业务的推荐、广告系统,优化数亿用户的阅读体验; 2、分析基础数据,挖掘用户兴趣、文章价值,增强推荐、广告系统的预测能力; 3、分析用户商业意图,挖掘流量潜在商业价值,提升流量变现; 4、研究计算机视觉算法,给用户提供更多更酷炫的功能; 5、研发机器翻译与对话技术,促进跨语言内容理解与交流。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、负责Foundation model和Generative AI的基础能力建设,追踪业界文本生成/翻译、图生文、Deepfake等方向的最新技术,极致优化预训练、微调、领域知识注入、RLHF、RM、AI Safety等能力; 2、将AIGC相关技术在广告、电商、短视频、直播等商业产品的内容理解上落地,构建新一代基于大模型的商业化生态; 3、从事强化学习与大语言模型智能体(LLM-based Agent)相结合的交叉研究与应用落地; 4、探索大模型高效训练/推理方案。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、利用机器学习技术,改进国际短视频业务的推荐、广告系统,优化数亿用户的阅读体验; 2、分析基础数据,挖掘用户兴趣、文章价值,增强推荐、广告系统的预测能力; 3、分析用户商业意图,挖掘流量潜在商业价值,提升流量变现; 4、研究计算机视觉算法,给用户提供更多更酷炫的功能; 5、研发机器翻译与对话技术,促进跨语言内容理解与交流。