logo of bytedance

字节跳动大模型应用算法实习生-AI PaaS

实习兼职A49805地点:上海状态:招聘

任职要求


1、2026届硕士及以上学位在读,计算机/软件工程/人工智能等相关专业优先;
2、有NLP/深度学习/机器学习领域的研究经历,特别是在大语言模型和生成式人工智能等方面有了解;熟悉大模型领域的数据工程建设、预训练、SFT、RLHF等流程,具备实操经验及项目实践者优先;
3、优秀的代码能力、数据结构和基础算法功底,熟练掌握至少一门编程语言,包括但不限于PythonJavaGo等;
4、在ICML/CVPR/NeurIPS/ACL等顶级期刊会议上发表论文者优先; 
5、良好的沟通协作能力,责任心强,积极主动,能和团队一起探索新技术,推进技术进步。

工作职责


ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。
团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入!

1、负责以下算法研究和应用方向之一:
1)AINative形态对话式服务算法的研发,在大规模机器学习和深度学习领域开展研发工作,设计和开发创新性算法模型,研究相关技术在创作、对话和客服等领域的全新应用和解决方案,满足用户不断增长的智能交互需求,全面提升用户在未来世界的生活和交流方式;
2)深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型;
3)提升自然语言理解的能力,比如意图识别,NL2SQL,向量召回,结构化/非结构化,短文本/长文本的表征学习等;
2、负责数据建设、指令微调、偏好对齐、模型优化;
3、深入调研和关注NLP/多模态/LLM等方向的前沿技术,支持模型效果的研发落地和持续优化,探索实际解决业界AI应用问题的方案。
包括英文材料
学历+
NLP+
深度学习+
机器学习+
大模型+
SFT+
数据结构+
算法+
Python+
Java+
Go+
ICML+
CVPR+
NeurIPS+
相关职位

logo of bytedance
实习A257120

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 1、负责以下算法研究和应用方向之一: 1)AINative形态对话式服务算法的研发,在大规模机器学习和深度学习领域开展研发工作,设计和开发创新性算法模型,研究相关技术在创作、对话和客服等领域的全新应用和解决方案,满足用户不断增长的智能交互需求,全面提升用户在未来世界的生活和交流方式; 2)深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型; 3)提升自然语言理解的能力,比如意图识别,NL2SQL,向量召回,结构化/非结构化,短文本/长文本的表征学习等; 2、负责数据建设、指令微调、偏好对齐、模型优化; 3、深入调研和关注NLP/多模态/LLM等方向的前沿技术,支持模型效果的研发落地和持续优化,探索实际解决业界AI应用问题的方案。

更新于 2025-01-16
logo of bytedance
实习A54791

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 1、负责以下算法研究和应用方向之一: 1)AINative形态对话式服务算法的研发,在大规模机器学习和深度学习领域开展研发工作,设计和开发创新性算法模型,研究相关技术在创作、对话和客服等领域的全新应用和解决方案,满足用户不断增长的智能交互需求,全面提升用户在未来世界的生活和交流方式; 2)深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型; 3)提升自然语言理解的能力,比如意图识别,NL2SQL,向量召回,结构化/非结构化,短文本/长文本的表征学习等; 2、负责数据建设、指令微调、偏好对齐、模型优化; 3、深入调研和关注NLP/多模态/LLM等方向的前沿技术,支持模型效果的研发落地和持续优化,探索实际解决业界AI应用问题的方案。

更新于 2025-01-16
logo of bytedance
实习A139850

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-03-03
logo of bytedance
实习A204351A

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-03-03