字节跳动大模型自动化评测专家(大语言模型方向)-DMC
任职要求
1、大学本科及以上学历,计算机科学与技术、软件工程、大数据技术、人工智能、智能科学与技术等专业; 2、精通Python程序开发,有良好的编码风格及创新优化意识,具备较强的程序开发能力; 3、有大模型训练或模型评估经验,熟悉大模型评测方法; 4、有责任心和较强的团队意识,对人工智能有较强的兴趣; 5、具备优秀的沟通协调能力和团队协作意识,有项目管理或团队负责人经验优先; 6、具备英文文献阅读能力,发表过计算机相关国际论文优先;大模型产品深度用户,了解PE(提示工程)。
工作职责
1、制定AI模型评估在代码方向的评估标准,主导评估体系构建,主导AI模型评估工作; 2、探索智能、高效的模型自动化评估方案,主导开发评估工具; 3、调研公开评测方法,并将公开评测集集成至内部平台。
1. 建设一站式的大模型自动化评测平台,负责大模型评测基准建设和评测算法研究应用。 2. 为蚂蚁AI业务建设科学的评测体系,参与AI业务评测基准建设,对数据、模型和业务进行全面评估验证。系统化业务问题识别与优化机制,帮助指引算法和技术迭代方向,推动业务落地并取得效果。
全面负责定义、设计并实现下一代对话系统的核心算法与交互范式,解决当前对话模型在多轮交互、知识应用、共情能力等方面的挑战,探索并引领模型在个性化、主动性、拟人化等前沿方向的技术突破。直接决定数亿夸克用户在Chat场景的与AI 的交互体验,塑造夸克在未来对话式 AI 时代的领先地位。 1. 对话体验定义与规划。深入分析用户意图与行为,结合业务场景,制定并执行对话体验的中长期技术演进路线图。并密切追踪并研究对话式 AI 领域的最新进展,包括主动式对话策略、多模态对话 (语音/视觉融合)、AI Agent 中的对话流控制等。您将主导定义“顶级对话体验”的标准,并将其分解为可落地、可量化的算法迭代目标。 2. 多轮对话与上下文理解。攻坚并解决长程、复杂多轮对话中的核心技术难题,包括但不限于指令遵循、上下文精准理解、长程记忆与遗忘机制、隐式意图识别等。您将设计创新的模型结构与训练策略,使模型具备真正连贯、有逻辑的对话能力。 3. 对话回复准确与全面。主导研发将外部知识 (如搜索、工具调用) 与大模型进行深度、动态融合的先进技术。致力于解决模型在对话中的意图偏离、事实性错误、内容不详实和知识更新不及时等问题,并通过 RAG 新范式或其他创新方法,显著提升对话的准确性与信息量。 4. 评测体系与数据飞轮。建立并完善一套科学、全面的对话能力评测体系,能够精准衡量模型的综合对话质量 (Coherence, Empathy, Informativeness 等)。设计并驱动高效的数据闭环系统,利用真实用户反馈持续、自动化地优化模型。
1. 大模型攻击研究 ● 针对大语言模型(LLM)、多模态模型(VLM)、智能体(Agent)等开展安全性与幻觉问题研究,系统化识别模型在对抗样本、越狱攻击、数据投毒、隐私泄露、注入、越权等方面的脆弱点; ● 设计并优化大模型对抗攻击算法,研究 Prompt 注入、自动化越狱策略与生成式数据增强方法,用于模拟实战攻击与安全性评估; ● 构建覆盖文本、图像、语音等多模态、agent场景的攻击方法库,支撑红队测试与模型安全基准建设。 2. 大模型防御机制 ● 研究大模型输入/输出层面的安全检测与防御机制,开发 Prompt 过滤、上下文改写、敏感内容抑制等方法; ● 构建跨模态、多层次的安全防护框架,提升 LLM/VLM/Agent 在实际应用中的鲁棒性。 3. 大模型安全对齐 ● 探索使用SFT、RL、MoE、RAG、Editing等对齐方法,提升模型的内生安全能力; ● 研究有害内容规避、幻觉抑制、安全对齐评测等关键技术,推动安全性融入模型全生命周期。 4. Agent 安全 ● 研究 Agent 在memory存储、多工具调用、链式推理中的攻击面与潜在风险,识别敏感数据泄露、工具滥用、意图篡改、海绵攻击等新型威胁; ● 设计 Agent 安全管控机制,包括权限控制、任务隔离、调用审计等,确保复杂场景下 Agent 的安全可控。
团队介绍:字节跳动剪映研发团队,主要支持剪映、醒图、Faceu 等多款国内外产品的研发工作,业务覆盖多元化影像创作场景,截止2021年6月,相关产品多次登顶国内外App Store 免费应用榜第一,并继续保持高速增长。加入我们,一起打造全球最受用户欢迎的影像创作产品。 课题介绍: 1、课题背景: 1)数字化营销时代,企业对高质量、多样化营销素材的需求呈爆发式增长。从社交媒体图文到短视频广告,从个性化推荐文案到多模态互动内容,营销场景的复杂化与用户需求的碎片化对素材生成效率、创意水平和精准度提出了更高要求。传统依赖人工策划与设计的模式成本高、周期长,难以满足实时化、动态化、规模化的业务需求。尽管生成式AI(AIGC)技术(如GPT等)已在文本、图像生成领域取得突破,但在营销场景中仍面临创意适配性差、多模态协同能力弱、品牌一致性难保障等瓶颈。本课题旨在研发“创作领域Agent”,通过智能技术实现从策略洞察到内容生产的全链路自动化,推动营销效率与效果的革命性升级。 2)随着大语言模型、多模态模型等大模型的成熟,通过视觉理解、语音识别、文本生成等AI大模型能力,提升视频剪辑效率,基于创作者的需求和创意,高效的创作出炫酷、个性化的视频成为了可能。当前行业虽已有部分智能剪辑工具,但大多局限于规则化操作,成片或缺乏对用户意图的理解,效果同质化,或缺乏成片逻辑与情感,机械堆砌素材。 本课题旨在研究适合视频剪辑的大模型技术,结合剪映平台的强大剪辑能力和效果,打造一个智能剪辑的智能体(Agent),赋能自媒体内容生产、影视工业化、广告营销等场景。 2、课题挑战: 1、创意与商业价值的平衡:AI生成内容易陷入同质化,需突破算法在品牌调性理解、用户情感共鸣、营销目标对齐等方面的局限,确保创意兼具新颖性与商业转化价值。 2、多模态动态协同:文本、图像、视频等模态的生成需实现语义与风格的跨模态对齐,且需支持动态组合与实时迭代(如根据用户反馈即时优化素材)。 3、复杂场景泛化能力:营销场景高度细分(如电商促销、品牌故事、危机公关),Agent需具备上下文感知与领域迁移能力,避免“一刀切”生成策略。 4、计算效率与资源限制:高分辨率视觉素材生成、多版本AB测试等场景对算力需求极高,需优化模型轻量化与推理速度,满足企业级部署的可行性。 5、伦理与合规风险:需解决版权争议(如AI生成素材的版权归属)、内容安全(如虚假宣传、文化敏感性)等问题,构建可信可控的生成框架。 6、视频数据复杂性远超图片和文字,巨量的用户素材,要通过大模型去精准理解,并与图片、音频、文字等多模态特征统一,对多模态模型理解能力和推理优化,提出了极高要求。 7、大模型对素材编排和剪辑的结果,可能偏离用户真实意图,既要避免输出模板化、同质化,又要结合用户个性化和创意,在风格、节奏等维度上加入“人性化创意”。 8、大参数模型训练成本高,推理慢,如何通过模型优化、工程优化等手段,给移动端、PC等终端用户极致的体验,也是课题的一大挑战。 职位描述: 1、负责剪映CapCut的AI视频编辑方向的Agent模型训练与评测,使用SFT/RLHF/Post-training等技术对视频创作进行领域知识建模; 2、提升视频创作Agent大模型的增强模型和安全能力的指令遵从能力、提升Pre-trained Model在视频创作的能力,构建行业领先的视频创作专家的智能Agent。