logo of bytedance

字节跳动NLP对话大模型算法实习生-电商业务

实习兼职A230707地点:杭州状态:招聘

任职要求


1、2026届本科及以上学历在读,计算机相关专业优先;
2、在大模型训练、智能体、提示词工程、信息检索、数据集构建、数据挖掘大模型评测等领域有实际的开发和从业经验者优先;
3、有复杂智能体开发经验者优先,有好奇心,喜欢新事物,善于合作,有创新精神,有一定的抗压能力;
4、至少熟悉一门计算机编程语言,包括但不限于C/C++/Java/Go/Python;
5、有高水平论文的优先,包括但不限于ACL、EMNLP、COLING、WWW、AAAI等;
6、实践动手能力强,ACMICPC、NOI/IOI、Top Coder、Kaggle比赛获奖者优先。

工作职责


ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。
团队介绍:Data-电商-智能对话团队,负责抖音电商场景下的智能对话与问答技术的创新和研究工作,致力于打造客服领域内领先的智能对话机器人,帮助平台和商家高效、准确地解决用户问题提升用户体验,降低平台/商家运维成本,不断提升业务效果。

1、数据挖掘:负责数据集的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,进行深度的数据挖掘,沉淀高价值信息,开发和优化Query理解、召回、相关性排序等技术,提升信息检索的效率和准确性,提升RAG的效果;
2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)、偏好学习,以及多模态模型训练,提升模型在特定场景下的表现;
3、提示词工程:与业务专家合作,构建和优化结构化的提示词,充分挖掘和利用大模型的能力,高效、精准解决实际问题;
4、智能体技术:利用领先的智能体框架,增强大模型的推理、对话和反思能力,解决复杂业务问题,提升用户体验;
5、大模型评测:制定和实施大模型的评估方案,结合人工评估和自动化评估手段,确保模型性能的可靠性和稳定性;
6、应用落地:定义业务问题,设定任务标准和目标,不断优化模型和系统,以达到最佳的业务效果和用户满意度。
包括英文材料
学历+
大模型+
信息检索+
数据挖掘+
C+
C+++
Java+
Go+
Python+
Kaggle+
相关职位

logo of bytedance
实习A59934

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商-智能对话团队,负责抖音电商场景下的智能对话与问答技术的创新和研究工作,致力于打造客服领域内领先的智能对话机器人,帮助平台和商家高效、准确地解决用户问题提升用户体验,降低平台/商家运维成本,不断提升业务效果。 1、数据挖掘:负责数据集的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,进行深度的数据挖掘,沉淀高价值信息,开发和优化Query理解、召回、相关性排序等技术,提升信息检索的效率和准确性,提升RAG的效果; 2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)、偏好学习,以及多模态模型训练,提升模型在特定场景下的表现; 3、提示词工程:与业务专家合作,构建和优化结构化的提示词,充分挖掘和利用大模型的能力,高效、精准解决实际问题; 4、智能体技术:利用领先的智能体框架,增强大模型的推理、对话和反思能力,解决复杂业务问题,提升用户体验; 5、大模型评测:制定和实施大模型的评估方案,结合人工评估和自动化评估手段,确保模型性能的可靠性和稳定性; 6、应用落地:定义业务问题,设定任务标准和目标,不断优化模型和系统,以达到最佳的业务效果和用户满意度。

更新于 2025-02-07
logo of bytedance
实习A200461

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商-智能对话团队,负责抖音电商场景下的智能对话与问答技术的创新和研究工作,致力于打造客服领域内领先的智能对话机器人,帮助平台和商家高效、准确地解决用户问题提升用户体验,降低平台/商家运维成本,不断提升业务效果。 1、数据挖掘:负责数据集的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,进行深度的数据挖掘,沉淀高价值信息,开发和优化Query理解、召回、相关性排序等技术,提升信息检索的效率和准确性,提升RAG的效果; 2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)、偏好学习,以及多模态模型训练,提升模型在特定场景下的表现; 3、提示词工程:与业务专家合作,构建和优化结构化的提示词,充分挖掘和利用大模型的能力,高效、精准解决实际问题; 4、智能体技术:利用领先的智能体框架,增强大模型的推理、对话和反思能力,解决复杂业务问题,提升用户体验; 5、大模型评测:制定和实施大模型的评估方案,结合人工评估和自动化评估手段,确保模型性能的可靠性和稳定性; 6、应用落地:定义业务问题,设定任务标准和目标,不断优化模型和系统,以达到最佳的业务效果和用户满意度。

更新于 2025-02-07
logo of bytedance
实习A194753

团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 自然语言领域LLM的出现,效果在众多垂直任务上都好于sota模型,从推荐领域看过去工业级推荐系统在较长的时间没有大幅的变化过。本项目旨在探索推荐领域下的大模型方案,改变现在持续了较长时间的推荐模型结构和Infra的基本范式,且效果大幅好于现在的模型,在抖音短视频/直播等多个业务场景上得到应用。但是怎么做好推荐领域的大模型也是一个比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,以及如何短视频、直播等体裁上做号内容的表征也是需要被解决的问题,这里会从模型参数scaling up、内容和用户的表征学习、内容理解多模态、超长序列建模、生成式推荐模型等多个方向来做深入的研究,对推荐场景的模型做系统性的升级。 研究方向: 跨模态的对齐和统一表征学习(推荐、内容多模态、自然语言); 推荐模型参数和算力scaling up; 超长序列建模; 生成式推荐模型。

更新于 2025-03-05
logo of bytedance
实习A25171

团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 自然语言领域LLM的出现,效果在众多垂直任务上都好于sota模型,从推荐领域看过去工业级推荐系统在较长的时间没有大幅的变化过。本项目旨在探索推荐领域下的大模型方案,改变现在持续了较长时间的推荐模型结构和Infra的基本范式,且效果大幅好于现在的模型,在抖音短视频/直播等多个业务场景上得到应用。但是怎么做好推荐领域的大模型也是一个比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,以及如何短视频、直播等体裁上做号内容的表征也是需要被解决的问题,这里会从模型参数scaling up、内容和用户的表征学习、内容理解多模态、超长序列建模、生成式推荐模型等多个方向来做深入的研究,对推荐场景的模型做系统性的升级。 研究方向: 跨模态的对齐和统一表征学习(推荐、内容多模态、自然语言); 推荐模型参数和算力scaling up; 超长序列建模; 生成式推荐模型。

更新于 2025-03-05