字节跳动产品内容设计师-TikTok直播(北京)Content Designer-TikTok LIVE (Beijing)
任职要求
1、优秀的英文写作与口语沟通能力,流利的中文口语与阅读能力; 2、3 年以上C端产品内容设计经验; 3、与产品、设计、研发、法务和本地化团队合作的经验; 4、具备创业心态,能积极主动地应对敏捷迭代和不理想的情况,致力于打造用户导向的设计体验; 5、写作作品集,包括但不限于:用户界面内容、短文本、用户教育内容、写作指南、内容词汇表或产品发布内容。 加分项: 1、有参与过直播类产品或功能的经验; 2、有国际化产品的全球团队协作经验; 3、会使用Figma。 Minimum Qualifications: 1.Excellent English written and verbal communication skills; 2.3+ years experience in content design, UX writing or copywriting for consumer-facing products; 3.Experience collaborating with Product Management, Design, Engineering, Legal, and Localization teams; 4.Entrepreneurial attitude, ability to deal with rapid changes and situations that are not ideal, and dedication to creating user-centric designs. 5.Writing portfolio including, but not limited to: user interface copy, microcopy, user education, style guides, glossary additions or product launch content. Preferred qualifications: 1.Experience with livestreaming products or features; 2.Experience working on a global product with international partners; 3.Experience using Figma.
工作职责
1、撰写和编辑UI文本,帮助创作者更好的使用我们的产品; 2、与产品、设计、工程师、运营及本地化团队密切合作,设定整体用户体验的高标准; 3、与目标市场的合作方按照优先级共同推进项目; 4、发起并管理内容审核,识别机会并推动区域活动内容的一致性,为我们的内容标准做出贡献,成为最佳实践的倡导者; 5、平衡业务与客户需求,确保功能开发的合理性,评估应用程序和体验的视觉风格、界面和交互流程; 6、综合内部和外部反馈,在快节奏的环境中,完成高质量的内容设计工作。 1.Write and edit UI text and related education materials to help creators navigate our product; 2.Collaborate closely with product managers, product designers, engineers, ops, legal, and localization to set a high bar for the overall user experience; 3.Manage and prioritize projects with multiple stakeholders across the target market; 4.Lead content audits to identify opportunities and drive consistency across the product; Contribute to our content standards and be a champion for best practices; 5.Understand how to balance business requirements and customer needs in building features; Ability to critique the visual style, interface, and interaction flow of applications and experiences; 6.Synthesize internal and external feedback; Complete high-quality work in a fast-paced, dynamic work environment.
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:TikTok是一个覆盖150个国家和地区的国际短视频平台,我们希望通过TikTok发现真实、有趣的瞬间,让生活更美好。TikTok 在全球各地设有办公室,全球总部位于洛杉矶和新加坡,办公地点还包括纽约、伦敦、都柏林、巴黎、柏林、迪拜、雅加达、首尔和东京等多个城市。 TikTok设计团队的目标是为全球数亿用户提供一流的用户体验,从而帮助他们更好的创作与表达,发现世界的多元与美好,并打破更多隔阂,建立起人与人的连接。我们是一个国际化的设计团队,遍布中国、美国、新加坡、澳大利亚等,世界各地的产品设计师、创意设计师、多媒体设计师、内容文案专家与本地化经理通力合作,把一个个不可能变成可能。 加入我们,你就有机会理解世界不同地域的文化差异,分析并解决复杂的体验问题,进行前沿的设计探索,更能亲身主导如何把一个想法转化成服务亿级数量用户的产品体验。 如果你积极自驱,对世界充满好奇心和想象力,有野心通过设计打造一流的产品,同时又脚踏实地,我们始终期待你成为我们的一员! 1、负责TikTok直播产品内容设计; 2、写作、编辑与优化产品界面文案,平衡业务目标和用户需求; 3、遵守写作标准和风格指南,并成为最佳实践的倡导者; 4、与产品经理、设计师、法务、研发、运营及本地化团队紧密合作,影响结果并促成共识; 5、发挥创意和创造性,将产品理念和情感通过文案传递给用户; 6、在快节奏、动态的工作环境中,进行优先级排序,在期限内高质量完成工作。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok的业务推荐算法工作,与来自国内外顶级名校、有丰富业界经验的同学合作,共同搭建行业顶尖的推荐系统,为用户提供一流的产品体验; 2、将最前沿的机器学习技术应用到TikTok的场景业务,包括混排/排序/多目标/召回/冷启动/探索/多样性/内容理解等等场景,不断优化用户体验,促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、Learning to Rank、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进短视频生态的长期繁荣发展。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok的推荐算法工作,与来自国内外院校、有丰富业界经验的同学合作,共同搭建推荐系统,为用户提供一流的产品体验; 2、将最前沿的机器学习技术应用到TikTok的场景业务,包括混排/排序/多目标/召回/冷启动/探索/多样性/内容理解等等场景,不断优化用户体验,促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、机器学习排序、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进短视频生态的长期繁荣发展。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。 1、负责TikTok的推荐算法工作,包括但不限于:视频推荐、内容理解、因果推断、智能增长等,为用户提供领先的产品体验; 2、结合机器学习技术和业务场景需求,运用包括强化学习、Graph Embedding、大模型、大规模计算等在内的前沿建模技能,解决业务痛点,提升线上效果; 3、与产品及运营团队紧密合作,对用户的行为进行深入理解和分析,制定合理高效的策略逻辑,促进生态的健康发展; 4、参与算法团队的基建工作,提升资源利用率、增强效果稳定性、优化开发流程等,持续提高团队成员的工作效率。