字节跳动推荐算法实习生-国际电商
任职要求
1、2026届硕士及以上学位在读,计算机、软件工程、数学、物理学等相关专业优先; 2、具备优秀的编码能力,熟悉Linux开发环境,熟悉C++和Python语言优先; 3、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 4、有扎实的数据结构和算法功底,熟悉机器学习、自然语言处理、数据挖掘中一项或多项; 5、对推荐系统、计算广告、搜索引擎相关技术有经验者优先。
工作职责
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 1、利用机器学习技术,改进电商的推荐系统,优化数亿用户的使用体验; 2、分析基础数据,挖掘用户兴趣、内容价值,增强推荐系统的预测能力。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 1、利用机器学习技术,改进电商的推荐系统,优化数亿用户的使用体验; 2、分析基础数据,挖掘用户兴趣、内容价值,增强推荐系统的预测能力。
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 1、利用机器学习技术,改进电商的推荐系统,优化数亿用户的使用体验; 2、分析基础数据,挖掘用户兴趣、内容价值,增强推荐系统的预测能力。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商-推荐与营销团队,主要负责国际电商商城推荐业务,涵盖商城首页、交易链路、商品详情页、店铺&橱窗等多个核心场景的信息流推荐业务,致力于每天为亿量级用户提供精准个性化商品、直播、短视频推荐服务;团队致力于解决现代推荐系统中各种有挑战的问题,通过算法不断提升用户体验和效率、创造更大的用户和社会价值。 1、参与国际电商个性化推荐算法的优化:包括商品推荐、直播推荐、短视频推荐等; 2、通过表征学习、图模型、深度学习、迁移学习、多任务学习等技术提升信息匹配的效率,让每个用户可以便捷的找到优质好货; 3、发现和分析用户行为数据,进行用户长短期兴趣建模,以及潜在兴趣预测,提升推荐的精准性; 4、通过算法自动挖掘优质、专业、高口碑的商品和主播,构建良性的循环机制,优化内容电商生态; 5、结合内容电商的业务特性,进行模型和算法创新,打造业界领先的推荐算法和系统。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:Data-电商-推荐与营销团队,主要负责国际电商商城推荐业务,涵盖商城首页、交易链路、商品详情页、店铺&橱窗等多个核心场景的信息流推荐业务,致力于每天为亿量级用户提供精准个性化商品、直播、短视频推荐服务;团队致力于解决现代推荐系统中各种有挑战的问题,通过算法不断提升用户体验和效率、创造更大的用户和社会价值。 1、参与国际电商个性化推荐算法的优化:包括商品推荐、直播推荐、短视频推荐等; 2、通过表征学习、图模型、深度学习、迁移学习、多任务学习等技术提升信息匹配的效率,让每个用户可以便捷的找到优质好货; 3、发现和分析用户行为数据,进行用户长短期兴趣建模,以及潜在兴趣预测,提升推荐的精准性; 4、通过算法自动挖掘优质、专业、高口碑的商品和主播,构建良性的循环机制,优化内容电商生态; 5、结合内容电商的业务特性,进行模型和算法创新,打造业界领先的推荐算法和系统。