logo of bytedance

字节跳动智能系统研究实习生-基础架构-筋斗云人才计划

实习兼职A140273A地点:北京状态:招聘

任职要求


1、2026届及之后毕业,博士在读,优先考虑人工智能、计算机科学、数学相关专业;
2、拥有扎实的信息检索数据挖掘机器学习、计算机网络等相关领域理论基础,精通计算机网络和网络编程,熟练掌握至少一门主流编程语言,如C/C++PythonGo等,具备优秀的代码能力、数据结构和基础算法功底;
3、针对不同研究方向,需具备相应能力,如能够独立完成复杂搜索任务的设计与开发;有LLM和基础架构相关研究背景;能完成研究点的设计文档、独立交付件、演示Demo;熟悉当前高性能网络和系统领域的最新进展,包括RDMA,拥塞控制、AI网络优化等技术;
4、具备高效的学习能力,拥有较强的自我驱动意识;具有良好的团队合作精神,善于与团队成员协作交流,共同攻克难题;出色的问题分析和解决能力,有自主探索解决方案的能力;出色的心理素质与应变能力,面对困难勇于迎接挑战,面对复杂局面沉着、冷静、灵活;
5、在SIGIR、VLDB、ICDE、NeurIPS、SIGCOMM、NSDI等顶级学术会议或期刊上发表过论文者优先,在面向AI场景的Serverless高性能弹性文件系统关键技术研究方向需有两篇CCF A类顶会论文。

工作职责


团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。
课题介绍:
课题背景:
在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。
课题挑战:
1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力;
2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模LLM for Infra 服务;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础;
3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开;
4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。
包括英文材料
信息检索+
数据挖掘+
机器学习+
网络编程+
C+
C+++
Python+
Go+
数据结构+
算法+
大模型+
NeurIPS+
相关职位

logo of bytedance
实习A26382A

团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模LLM for Infra 服务;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。

更新于 2025-02-28
logo of bytedance
实习A65469A

团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模LLM for Infra 服务;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。

更新于 2025-02-28
logo of bytedance
实习A11666

团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模工业级Self-Driving Infra平台;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。

更新于 2025-02-28
logo of bytedance
实习A152842

团队介绍:字节跳动STE团队一直致力于操作系统内核与虚拟化,系统基础软件与基础库的构建和性能优化、超大规模数据中心的系统稳定性和可靠性建设、新硬件与软件的协同设计等基础技术领域的研发与工程化落地,具备全面的基础软件工程能力,为字节上层业务保驾护航。 课题介绍: 在当今数字化时代,随着云计算、人工智能和大数据技术的深度融合,现代数据中心正面临着指数级增长的算力需求与现有计算架构效能瓶颈之间的突出矛盾。传统以通用CPU为核心的体系架构在应对多样化负载时,暴露出诸多问题。例如,内存子系统带宽与时延约束导致的 “内存墙” 效应持续加剧,异构计算单元间的数据搬运开销占比超过实际运算时间,安全可信执行环境带来的性能损耗超过 30%,单机柜算力密度提升受限于功耗密度阈值。与此同时,新兴工作负载如AI训练、图计算、时序数据库等呈现出动态异构特征,对计算架构提出了差异化需求,传统固定架构难以实现最优能效比。 操作系统作为计算机体系结构下重要的软件基础设施与核心技术,在这样的背景下也面临着巨大的挑战。随着计算需求的增长和技术的进步,传统的同构计算环境已无法满足日益复杂的计算任务。现代计算场景中,硬件架构呈现高度异构化,包括 CPU、GPU、FPGA、TPU、NPU、DPU 等,同时边缘计算、云计算形成分布式网络。传统操作系统难以高效管理跨节点、跨架构的资源。加之人工智能训练等场景需要低延迟、高吞吐、安全可信,动态弹性的分布式系统支持,这就要求操作系统具备跨异构资源的统一抽象与调度能力。学术界和工业界对下一代计算机操作系统在分布式微内核架构,异构资源调度算法,跨层优化与编译器支持,安全可信技术,虚拟化和 Serverless,AI 驱动操作系统内核优化以及操作系统内置 AI 推理引擎等方面展开了积极的探索和研究。 课题挑战: 方向一:体系化结构方向 1)负载特征与架构优化:建立数据中心动态负载特征建模框架,深入研究面向数据中心Workload的体系结构设计与优化方法,使系统能够更好地适应多样化的负载需求; 2)CPU核心架构创新:研究高性能低功耗CPU核心架构,积极探索超标量流水线与数据流引擎的融合设计,提升CPU的性能和能效; 3)新型内存层次构建:构建支持存算一体化的新型内存层次结构,研究基于3D堆叠技术的近存计算架构,重点突破高带宽互连拓扑优化、混合内存控制器设计、内存访问模式预测算法,解决 “内存墙” 等问题; 4)安全可信架构构建:构建安全可信计算架构,包括侧信道攻击防御的微架构级实现、侧信道安全架构、自动侧 / 隐蔽通道泄漏检测,确保系统在复杂环境下的安全性和完整性; 5)数据中心架构创新:探索整机柜级系统总线扩展,构建内存语义互联的新型数据中心架构,研究基于新型总线协议 (CXL/UALink) 的全局内存共享机制,提升数据中心的整体性能和资源利用率; 6)可靠性增强技术研究:研究可靠性增强技术,包括开发基于机器学习的故障预测模型,设计自修复的微架构容错机制,研究硬件静默故障检测,以及系统及IP可靠性特性研究和数据分析,保障系统的稳定运行。 方向二:操作系统方向 1)操作系统关键技术突破:突破传统单机操作系统存在的硬件资源利用局限、功能扩展与升级运维复杂、数据管理与共享不足、安全性与可靠性欠佳等问题。在计算高度异构以及计算环境分布化的情况下,从硬件到软件建立完整的信任链,保证整个系统的安全性和完整性。同时,有效地管理和协调多个节点间的通信、数据同步及故障恢复,设计高效的调度算法来匹配任务需求与最适合的计算资源,以最大化性能和效率。操作系统需要能够理解不同类型的计算任务,并能根据实时的工作负载动态调整资源分配,实现跨异构资源的统一抽象与调度; 2)跨领域知识融合:本课题需要融合 OS、内核、算法、存储、虚拟化、网络、系统工程等多方面的跨领域知识和经验,以实现数据中心智能计算体系结构与操作系统的协同创新。

更新于 2025-02-28