字节跳动强化学习算法工程师(角色化模型方向)-Top Seed
任职要求
1、2026届获得博士学位,人工智能、计算机、自动化、数学相关专业优先; 2、优秀的代码能力、数据结构和基础算法功底,熟练C/C++或Python,ACM/ICPC、NOI/IOI、Top Coder、Kaggle等比赛获奖者优先; 3、熟悉NLP、CV相关的算法和技术,熟悉大模型训练、多模态算法者优先; 4、在虚拟角色生成、多模态交互、人格化建模等方向有项目经验或论文成果者优先; 5、能系统性拆解角色类模型在生成一致性、长期记忆等场景的挑战,提出创新解决方案; 6、具备强自驱力,能与产品、算法团队紧密协作,推动技术从研究到落地的全链路闭环。
工作职责
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、RL驱动的角色模型训练:优化角色类大模型的行为策略、长期记忆管理和多模态交互能力,突破角色行为一致性、情感表达合理性等技术瓶颈; 2、极致性能优化:超大规模模型的分布式训练优化,提升角色类模型的推理效率与资源利用率,指令微调、偏好对齐、数据增强等技术的场景化创新; 3、业务场景落地:支持豆包、猫箱等产品的角色生成需求,覆盖对话、创作、教育等场景,探索角色模型在智能硬件、元宇宙等领域的沉浸式交互能力; 4、前沿探索:研究人格化模型在情感计算、社会常识推理等方向的突破,定义AI角色从「功能执行」到「人格化陪伴」的技术范式。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、RL驱动的角色模型训练:优化角色类大模型的行为策略、长期记忆管理和多模态交互能力,突破角色行为一致性、情感表达合理性等技术瓶颈; 2、极致性能优化:超大规模模型的分布式训练优化,提升角色类模型的推理效率与资源利用率,指令微调、偏好对齐、数据增强等技术的场景化创新; 3、业务场景落地:支持豆包、猫箱等产品的角色生成需求,覆盖对话、创作、教育等场景,探索角色模型在智能硬件、元宇宙等领域的沉浸式交互能力; 4、前沿探索:研究人格化模型在情感计算、社会常识推理等方向的突破,定义AI角色从「功能执行」到「人格化陪伴」的技术范式。
团队介绍:字节跳动豆包大模型团队成立于2023年,致力于开发业界最先进的AI大模型技术,成为世界一流的研究团队,为科技和社会发展作出贡献。 豆包大模型团队在AI领域拥有长期愿景与决心,研究方向涵盖NLP、CV、语音等,在中国、新加坡、美国等地设有实验室和研究岗位。团队依托平台充足的数据、计算等资源,在相关领域持续投入,已推出自研通用大模型,提供多模态能力,下游支持豆包、扣子、即梦等50+业务,并通过火山引擎开放给企业客户。目前,豆包APP已成为中国市场用户量最大的AIGC应用。 1、RL驱动的角色模型训练:优化角色类大模型的行为策略、长期记忆管理和多模态交互能力,突破角色行为一致性、情感表达合理性等技术瓶颈; 2、极致性能优化:超大规模模型的分布式训练优化,提升角色类模型的推理效率与资源利用率,指令微调、偏好对齐、数据增强等技术的场景化创新; 3、业务场景落地:支持豆包、猫箱等产品的角色生成需求,覆盖对话、创作、教育等场景,探索角色模型在智能硬件、元宇宙等领域的沉浸式交互能力; 4、前沿探索:研究人格化模型在情感计算、社会常识推理等方向的突破,定义AI角色从「功能执行」到「人格化陪伴」的技术范式。
研究方向一:垂域LLM研究与构建 1.基座模型架构设计与优化:参与大语言模型基座架构的设计,研究前沿技术,如稀疏激活、混合精度训练等,同时优化模型的训练和推理流程。 2.技术创新与突破:参与前沿技术研究,如多任务学习、跨模态理解等,推动模型在复杂任务上的性能提升;探索Transformer替代架构,突破现有模型scaling law限制;同时挑战学术benchmark,为模型的性能树立新的行业标杆。 3.强化学习算法研究:参与大语言模型后训练阶段的强化学习算法研究,包括基于AI和环境反馈的强化学习(RLXF)算法。同时探索奖励模型与反馈机制,研究可泛化的细粒度过程监督和奖励建模,探索基于细粒度反馈的强化学习算法。 4.垂域模型定制化构建:领域认知智能突破,探索小样本场景自演进架构设计、可信推理机制构建等方向,同时建立面向AGI的模型评价体系新范式。 5.跨部门协作与落地:与公司数据科学家、算法工程师、产品团队紧密合作,将研究成果快速转化为实际应用,推动大语言模型在更多场景的落地。 研究方向二:垂域MLLM研究与构建 1.研究多模态表征与大语言模型融合的前沿技术,设计和实现创新算法,研究异质数据的统一编解码模型,适配多种模态下的特征统一,实现高效微调与优化。 2.探索强化学习(RL)在多模态大模型中的应用,包括强化学习增强的多模态生成、跨模态对齐、偏好建模及自适应优化,提升多模态理解与推理能力。 3.持续追踪多模态与强化学习结合的最新研究进展,优化现有多模态系统架构,提升性能、效率与可扩展性,推动多模态强化学习在智能体交互、决策推理等任务中的应用。 4.构建技术评估体系,通过多场景验证推动多模态理解、生成及强化学习优化策略的落地应用,提升多模态大模型的泛化能力和实际应用价值。 研究方向三:基于角色扮演的虚拟数字助理 1. 角色扮演技术(Role-Playing):通过模型优化、Agent构建,在人设、拟人性、情感等取得显著提升。 2. 记忆管理与增强(Memory):通过模型长上下文,记忆抽取与管理,提升系统的记忆能力。 3. 个性化技术:通过用户行为数据挖掘与建模,结合多轮对话上下文理解,分析用户情感状态,提升模型的个性化回复能力。 4. 基于Agent的数字助理:通过Agent构建和基于RL的优化,实现数字助理的能力复刻和增强